ISSN: 2705-2214
Model: Open Access/Peer Reviewed
DOI: 10.31248/JPHD
Start Year: 2018
Email: jphd@integrityresjournals.org
https://doi.org/10.31248/JPHD2025.165 | Article Number: 2A0228951 | Vol.7 (5) - October 2025
Received Date: 11 July 2025 | Accepted Date: 20 August 2025 | Published Date: 30 October 2025
Authors: Vivian Chinasa Woke* , Nwabueze Ebere , Eme Efioanwan Orlu , Ikem Kris Ekweozor , Muhammad M. Mukhtar , Petrus Uchenna Inyama and Udoka Nwangwu
Keywords: physico-chemical parameters, Anopheles, breeding sites, Culex, Port Harcourt Metropolis, urban pollution, vector ecology.
Monitoring and understanding the bionomics of mosquitoes is a key to devising ecologically friendly, alternative vector control strategies. Malaria and lymphatic filariasis are among the major mosquito-borne diseases primarily transmitted by female Anopheles and Culex mosquitoes, respectively, in Sub-Saharan Africa. Malaria mortality remains alarmingly high in Africa, particularly in Nigeria, which accounts for 26% of all global malaria deaths. This study was carried out to characterise the physicochemical parameters of breeding sites utilised by mosquito vector populations from June 2022 through October 2023. The physicochemical properties of Anopheles and Culex mosquito breeding habitats in three communities, each of the two Local Government Areas (Obio/Akpor and Port Harcourt), Rivers State, Nigeria, were analysed. Water samples from different study breeding habitats for physico-chemical investigation were collected concurrently with larvae and pupae in dark specimen bottles of 500 ml capacity to guarantee accurate representation. A total of 12 water quality parameters were measured from samples collected at six sites (three from each of the two LGAs). The parameters measured included alkalinity (mg/L), chloride (Cl⁻) (mg/L), electrical conductivity (EC) (µS/cm), nitrite (NO₂) (mg/L), sulphate, phosphate, hardness, dissolved oxygen (DO), total hydrocarbon content (THC), temperature, pH, total dissolved solids (TDS), and total hydrocarbon content (THC) using standard methods. Mosquito larvae and pupae (Anopheles spp and Culex spp) were sampled and collected from these habitats, reared to adulthood under controlled conditions, and morphologically identified. Results from the study showed significantly higher levels of TDS, conductivity, alkalinity, DO, hardness, nitrates, sulphates, phosphates, and THC compared to the reference breeding habitats, with THC reaching 384 mg/l and 350 mg/l in Anopheles gambiae sensu lato (sl) and Culex species breeding habitats, respectively. This study demonstrates that Anopheles and Culex mosquitoes can thrive in highly contaminated habitats marked by elevated organic pollution indicators, such as high THC levels. The findings highlight significant public health implications, including increased nuisance biting and a heightened risk of disease transmission in polluted environments. These results underscore the need for improved environmental management to mitigate the spread of mosquito-borne diseases.
| Abo, E. E., Mostafa, A. A., Ahmed, E. A., Khalil, A., Ghonaim, M., & Ahmed, A. M. (2024). Mosquito abundance and physicochemical characteristics of their breeding water in El-Fayoum Governorate, Egypt. Journal of King Saud University-Science, 36(2), 103040. https://doi.org/10.1016/j.jksus.2023.103040 |
||||
| Akeju, A. V., Olusi, T. A., & Simon-Oke, I. A. (2022). Effect of physicochemical parameters on Anopheles mosquitoes larval composition in Akure North Local Government area of Ondo State, Nigeria. The Journal of Basic and Applied Zoology, 83(1), 34. https://doi.org/10.1186/s41936-022-00298-3 |
||||
| Amawulu, E., Commander, T., & Amaebi, A. (2020). Effect of physicochemical parameters on mosquito larva population in the Niger delta university campuses, Bayelsa State, Nigeria. International Journal of Zoological Research, 16(2), 63-68. https://doi.org/10.3923/ijzr.2020.63.68 |
||||
| APHA (2005). Standard Methods for the Examination of Water and Wastewater. 21st Edition, American Public Health Association/American Water Works Association/Water Environment Federation, Washington DC. | ||||
| Avramov, M., Thaivalappil, A., Ludwig, A., Miner, L., Cullingham, C. I., Waddell, L., & Lapen, D. R. (2024). Relationships between water quality and mosquito presence and abundance: a systematic review and meta-analysis. Journal of Medical Entomology, 61(1), 1-33. https://doi.org/10.1093/jme/tjad139 |
||||
| Awolola, T. S., Oduola, A. O., Obansa, J. B., Chukwurar, N. J., & Unyimadu, J. P. (2007). Anopheles gambiae s.s. breeding in polluted water bodies in urban Lagos, Southwestern Nigeria. Journal of Vector Borne Diseases, 44(3), 241-244. | ||||
| Azari-Hamidian, S., & Azarihamidian, S. (2020). Vertical distribution, biodiversity, and some selective aspects of the physicochemical characteristics of the larval habitats of mosquitoes (Diptera: Culicidae) in Chaharmahal and Bakhtiari Province, Iran. International Journal of Epidemiologic Research, 7(2), 74-91 https://doi.org/10.34172/ijer.2020.15 |
||||
| Beck-Johnson, L. M., Nelson, W. A., Paaijmans, K. P., Read, A. F., Thomas, M. B., & Bjørnstad, O. N. (2013). The effect of temperature on Anopheles mosquito population dynamics and the potential for malaria transmission. PLOS one, 8(11), e79276. https://doi.org/10.1371/journal.pone.0079276 |
||||
| Boateng, C. A., Afatodzie, M. S., McLure, A., Kwansa-Bentum, B., & de Souza, D. K. (2025). Lymphatic filariasis transmission 10 years after stopping mass drug administration in the Gomoa west district of Ghana. International Journal of Infectious Diseases, 152, 107790. https://doi.org/10.1016/j.ijid.2025.107790 |
||||
| Caminade, C., Ayala, D., de Chevigny, T., Ngou, O., Tchouatieu, A., Girond, F., ... & Deuve, J. L. (2025). Climate change and malaria control: a call to urgent action from Africa's frontlines. Malaria Journal, 24(1), 179. https://doi.org/10.1186/s12936-025-05431-5 |
||||
| Center for Disease Control and Prevention (CDC) (2018). Parasites: Lymphatic Filariasis. Retrieved 22nd March 2022 from https://cdc.gov/filarial-worms/about/lymphatic-filariasis.html. | ||||
| Coetzee, M. (2020). Key to the females of Afrotropical Anopheles mosquitoes (Diptera: Culicidae). Malaria journal, 19, 70. https://doi.org/10.1186/s12936-020-3144-9 |
||||
| Ebere, N., Atting, I., Ekerette, I., & Nioking, A. (2019). Assessment of Level of Susceptibility of Anopheles gambiae SL to Public Health Insecticides in a Malaria Vector Sentinel Site, Rivers State, Nigeria. Annual Research & Review in Biology, 32(1), 1-10. https://doi.org/10.9734/arrb/2019/v32i130071 |
||||
| Emidi, B., Kisinza, W. N., Mmbando, B. P., Malima, R., & Mosha, F. W. (2017). Effect of physicochemical parameters on Anopheles and Culex mosquito larvae abundance in different breeding sites in a rural setting of Muheza, Tanzania. Parasites & vectors, 10, article number 304. https://doi.org/10.1186/s13071-017-2238-x |
||||
| Fazeli-Dinan, M., Azarnoosh, M., Özgökçe, M. S., Chi, H., Hosseini-Vasoukolaei, N., Haghi, F. M., Zazouli, M.A., Nikookar, S.H., Dehbandi, R., Enayati, A., & Hemingway, J. (2022). Global water quality changes posing threat of increasing infectious diseases, a case study on malaria vector Anopheles stephensi coping with the water pollutants using age-stage, two-sex life table method. Malaria Journal, 21(1), 178. https://doi.org/10.1186/s12936-022-04201-x |
||||
| Gillies, M. T., & Coetzee, M. (1987). A supplement to the anopheline of Africa South of the Sahara. South African Institute for Medical Research, 55 (8), 1-143 | ||||
| Giesen, C., Roche, J., Redondo-Bravo, L., Ruiz-Huerta, C., Gomez-Barroso, D., Benito, A., & Herrador, Z. (2020). The impact of climate change on mosquito-borne diseases in Africa. Pathogens and Global Health, 114(6), 287-301. https://doi.org/10.1080/20477724.2020.1783865 |
||||
| Hanafi-Bojd, A. A., Soleimani-Ahmadi, M., Doosti, S., & Azari-Hamidian, S. (2017). Larval habitats, affinity and diversity indices of Culicinae (Diptera: Culicidae) in southern Iran. International Journal of Mosquito Research, 4(2), 27-38. | ||||
| Huzortey, A. A., Kudom, A. A., Mensah, B. A., Sefa-Ntiri, B., Anderson, B., & Akyea, A. (2022). Water quality assessment in mosquito breeding habitats based on dissolved organic matter and chlorophyll measurements by laser-induced fluorescence spectroscopy. Plos one, 17(7), e0252248. https://doi.org/10.1371/journal.pone.0252248 |
||||
| Kenawy, M. A., Ammar, S. E., Abdel-Rahman, H. A. (2013). Physico-chemical characteristics of the mosquito breeding water in two urban areas of Cairo Governorate, Egypt. Journal of Entomological and Acarological Research, 45(3), 96-100. https://doi.org/10.4081/jear.2013.e17 |
||||
| Kura, K., Stolk, W. A., Basáñez, M. G., Collyer, B. S., De Vlas, S. J., Diggle, P. J., Gass, K., Graham, M., Hollingsworth, T. D., King, J. D., & Coffeng, L. E. (2024). How does the proportion of never treatment influence the success of mass drug administration programs for the elimination of lymphatic filariasis? Clinical Infectious Diseases, 78(Supplement_2), S93-S100. https://doi.org/10.1093/cid/ciae021 |
||||
| Lawal, N., Idoko, A. S., Abdullahi, H., Jibiya, S. A., Ibrahim, N., Osibemhe, M., & Imam, A. A. (2022). Assessment of physico-chemical characteristics of mosquito breeding sites in Northwest Nigeria. International Journal of Mosquito Research, 9(3), 134-138. https://doi.org/10.22271/23487941.2022.v9.i1b.594 |
||||
| Liu, X., Baimaciwang, Yue, Y., Wu, H., Pengcuociren, Guo, Y., Cirenwangla, Ren, D., Danzenggongga, Dazhen, Yang, J., Zhaxisangmu, Li, J., Cirendeji, Zhao, N., Sun, J., Li, J., Wang, J., Cirendunzhu, & Liu, Q. (2019). Breeding Site Characteristics and Associated Factors of Culex pipiens Complex in Lhasa, Tibet, P. R. China. International Journal of Environmental Research and Public Health, 16(8), 1407#. https://doi.org/10.3390/ijerph16081407 |
||||
| Mbanzulu, K. M., Mboera, L. E., Wumba, R., Engbu, D., Bojabwa, M. M., Zanga, J., Mitashi, P.M., Misinzo, G., & Kimera, S. I. (2022). Physicochemical characteristics of Aedes mosquito breeding habitats in suburban and urban areas of Kinshasa, Democratic Republic of the Congo. Frontiers in Tropical Diseases, 2, 789273. https://doi.org/10.3389/fitd.2021.789273 |
||||
| Muhammad, A., Ibrahim, S. S., Mukhtar, M. M., Irving, H., Abajue, M. C., Edith, N. M., Da'u, S.S., Paine, M. J., & Wondji, C. S. (2021). High pyrethroid/DDT resistance in major malaria vector Anopheles coluzzii from Niger-Delta of Nigeria is probably driven by metabolic resistance mechanisms. PLoS One, 16(3), e0247944. https://doi.org/10.1371/journal.pone.0247944 |
||||
| Obianuju, A., Obafemi, A., & Ogoro, M. (2017). Mapping land cover determinants of malaria in Obio Akpor Local Government of Rivers State, Nigeria. IOSR Journal of Humanities and Social Science, 22(6), 29-40. https://doi.org/10.9790/0837-2206042940 |
||||
| Oduola, A. O., Obembe, A., Adelaja, O. J., & Ande, A. T. (2016). Surveillance and insecticide susceptibility status of culicine mosquitoes in selected communities utilizing long-lasting insecticidal nets in Kwara State, Nigeria. Animal Research International, 13(3), 2483-2491. | ||||
| Ononamadu, C. J., Datit, J. T., & Imam, A. A. (2020). Insecticide resistance profile of Anopheles gambiae mosquitoes: A study of residential and industrial breeding sites in Kano metropolis, Nigeria. Environmental Health Insights, 14, 1-9. https://doi.org/10.1177/1178630219897272 |
||||
| Ossè, R. A., Tokponnon, F., Padonou, G. G., Sidick, A., Aïkpon, R., Fassinou, A., Koukpo, C. Z., Sèwadé, W., Akinro, B., Sovi, A., & Akogbéto, M. C. (2019). Involvement of Anopheles nili in Plasmodium falciparum transmission in North Benin. Malaria journal, 18(1), 152. https://doi.org/10.1186/s12936-019-2792-0 |
||||
| Powell, J. R. (2018). Mosquito-borne human viral diseases: why Aedes aegypti? The American journal of tropical medicine and hygiene, 98(6), 1563-1565. https://doi.org/10.4269/ajtmh.17-0866 |
||||
| Rueda, L. M., Patel, K. J., Axtell, R. C., & Stinner, R. E. (1990). Temperature-dependent development and survival rates of Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). Journal of medical entomology, 27(5), 892-898. https://doi.org/10.1093/jmedent/27.5.892 |
||||
| Seal, M., & Chatterjee, S. (2023). Combined effect of physico-chemical and microbial quality of breeding habitat water on oviposition of malarial vector Anopheles subpictus. Plos one, 18(3), e0282825. https://doi.org/10.1371/journal.pone.0282825 |
||||
| Silberbush, A., Abramsky, Z., & Tsurim, I. (2015). Dissolved oxygen levels affect the survival and developmental period of the mosquito Culex pipiens. Journal of Vector Ecology, 40(2), 425-427. https://doi.org/10.1111/jvec.12186 |
||||
| WebMD (2022). Elephantiasis: What to Know. Retrieved 22nd March 2022 from https://www.webmd.com/a-to-z-guides/elephantiasis-what-to-know | ||||
| Williams, J., & Pinto, J. (2012). Training manual on malaria entomology: For entomology and vector control technicians (basic level). Integrated Vector Management of Malaria and Other Infectious Diseases Task Order 2 Contract GHA-I-02-04-00007-00. 86p. Retrieved from https://orene.org/wp-content/uploads/2019/04/2012-Training-manual-malaria-entomology.pdf | ||||
| World Health Organisation (WHO) (2024). World malaria report 2024: Addressing inequity in the global malaria response. Geneva: World Health Organization. Retrieved from https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2024. | ||||
| Yina, G. I., Yakubu, D. P., Mafuyai, H. B., & Pam, D. D. (2023). Susceptibility Status of Anopheles gambiae to selected Insecticides in parts of Benue State, North Central Nigeria. Nigerian Journal of Parasitology, 44(2), 404-411. https://doi.org/10.4314/njpar.v44i2.13 |
||||
| Zhou, G., Minakawa, N., Githeko, A., & Yan, G. (2004). Spatial distribution patterns of malaria vectors and sample size determination in spatially heterogeneous environments: a case study in the west Kenyan highland. Journal of Medical Entomology, 41(6), 1001-1009. https://doi.org/10.1603/0022-2585-41.6.1001 |
||||