ISSN: 2536-7064
Model: Open Access/Peer Reviewed
DOI: 10.31248/JBBD
Start Year: 2016
Email: jbbd@integrityresjournals.org
https://doi.org/10.31248/JBBD2025.243 | Article Number: BE4444331 | Vol.10 (5) - December 2025
Received Date: 14 November 2025 | Accepted Date: 15 December 2025 | Published Date: 30 December 2025
Authors: Muhammad Salihu Ibrahim* , Rumanatu Ibrahim Baba , Maryam Habeeb Muhammad3 , Abubakar Usman Zage and Mas’ud Abubakar
Keywords: oxidative stress, antioxidant, carotenoids, human health, chronic disease prevention, lycopene
Lycopene, a non-provitamin A carotenoid predominantly found in tomatoes and other red fruits, has emerged as a bioactive compound of considerable interest due to its potent antioxidant and anti-inflammatory properties. Recognized as one of the most effective singlet oxygen quenchers among dietary carotenoids, lycopene plays a central role in mitigating oxidative stress and preserving cellular integrity. A growing body of experimental and epidemiological evidence suggests that lycopene intake is inversely associated with the risk of several chronic diseases, including cardiovascular disorders, certain cancers, metabolic syndromes, and neurodegenerative conditions. These protective effects are primarily attributed to lycopene’s ability to neutralize reactive oxygen species, modulate inflammatory mediators, regulate gene expression, and enhance intercellular communication. Additionally, factors such as dietary composition, food processing, and individual metabolic variations significantly influence lycopene’s bioavailability and physiological efficacy. This review synthesizes current findings on the mechanistic pathways through which lycopene exerts its health-promoting effects, emphasizing its antioxidant and anti-inflammatory roles as pivotal mechanisms in disease prevention. Understanding these molecular interactions not only strengthens the evidence for lycopene’s functional relevance in human health but also underscores its potential application in nutrition-based therapeutic strategies aimed at reducing the global burden of chronic diseases.
| Alabdulmunem, M. A. (2022). Antioxidant effect of lycopene on retinal pigment epithelial cell line. Medical Research Archives, 10(12), 1-7. https://doi.org/10.18103/mra.v10i12.3441 |
||||
| Arballo, J., Amengual, J., & Erdman Jr, J. W. (2021). Lycopene: A critical review of digestion, absorption, metabolism, and excretion. Antioxidants, 10(3), 342. https://doi.org/10.3390/antiox10030342 |
||||
| Babaei, A., Asadpour, R., Mansouri, K., Sabrivand, A., & Kazemi‐Darabadi, S. (2022). Lycopene improves testicular damage and sperm quality in experimentally induced varicocele: Relationship with apoptosis, hypoxia, and hyperthermia. Food science & nutrition, 10(5), 1469-1480. https://doi.org/10.1002/fsn3.2762 |
||||
| Balali, A., Fathzadeh, K., Askari, G., & Sadeghi, O. (2025). Dietary intake of tomato and lycopene, blood levels of lycopene, and risk of total and specific cancers in adults: a systematic review and dose-response meta-analysis of prospective cohort studies. Frontiers in Nutrition, 12, 1516048. https://doi.org/10.3389/fnut.2025.1516048 |
||||
| Bin-Jumah, M. N., Nadeem, M. S., Gilani, S. J., Mubeen, B., Ullah, I., Alzarea, S. I., Ghoneim, M. M., Alshehri, S., Al-Abbasi, F. A., & Kazmi, I. (2022). Lycopene: A Natural Arsenal in the War against Oxidative Stress and Cardiovascular Diseases. Antioxidants, 11(2), 232. https://doi.org/10.3390/antiox11020232 |
||||
| Böhm, E. W., Buonfiglio, F., Voigt, A. M., Bachmann, P., Safi, T., Pfeiffer, N., & Gericke, A. (2023). Oxidative stress in the eye and its role in the pathophysiology of ocular diseases. Redox Biology, 68, 102967. https://doi.org/10.1016/j.redox.2023.102967 |
||||
| Cai, Z., Chen, F., Wang, Y., Wang, X., Yang, X., & Zhang, C. (2023). Lycopene Maintains Mitochondrial Homeostasis to Counteract the Enterotoxicity of Deoxynivalenol. Antioxidants (Basel, Switzerland), 12(11), 1958. https://doi.org/10.3390/antiox12111958 |
||||
| Cha, J. H., Kim, W. K., Ha, A. W., Kim, M. H., & Chang, M. J. (2017). Anti-inflammatory effect of lycopene in SW480 human colorectal cancer cells. Nutrition research and practice, 11(2), 90-96. https://doi.org/10.4162/nrp.2017.11.2.90 |
||||
| Chen, J., Song, Y., Zhang, L., & Gao, Y. (2022). Lycopene in human health and disease prevention: Mechanisms and clinical evidence. Food Science and Human Wellness, 11(4), 853-868. | ||||
| Cheng, J., Miller, B., Balbuena, E., & Eroglu, A. (2020). Lycopene protects against smoking-induced lung cancer by inducing base excision repair. Antioxidants, 9(7), 643. https://doi.org/10.3390/antiox9070643 |
||||
| Crowe-White, K. M., Phillips, T. A., & Ellis, A. C. (2019). Lycopene and cognitive function. Journal of Nutritional Science, 8, e20. https://doi.org/10.1017/jns.2019.16 |
||||
| Di Sano, C., Lazzara, V., Durante, M., D'Anna, C., Bonura, A., Dino, P., Uasuf, C. G., Pace, E., Lenucci, M. S., & Bruno, A. (2022). The protective anticancer effect of natural lycopene supercritical co2 watermelon extracts in adenocarcinoma lung cancer cells. Antioxidants, 11(6), 1150. https://doi.org/10.3390/antiox11061150 |
||||
| Durairajanayagam, D., Agarwal, A., Ong, C., & Prashast, P. (2014). Lycopene and male infertility. Asian journal of andrology, 16(3), 420-425. https://doi.org/10.4103/1008-682X.126384 |
||||
| El-Kazaz, S. E., Hafez, M. H., Noreldin, A. E., & Khafaga, A. F. (2025). Lycopene alleviates cognitive dysfunctions in an Alzheimer's disease rat model via suppressing the oxidative and neuroinflammatory signalling. Tissue & Cell, 96, 102975. https://doi.org/10.1016/j.tice.2025.102975 |
||||
| Fararh, K. M., El-Aziz, A. M. A., & Alhelbawy, N. A. (2019). Anti-inflammatory, immunomodulatory and anti-oxidant effects of lycopene and vitamin e in e. coli infected broilers. International Journal of Advanced Research, 7(7), 790-800. https://doi.org/10.21474/IJAR01/9425 |
||||
| Grabowska, M., Wawrzyniak, D., Rolle, K., Chomczyński, P., Oziewicz, S., Jurga, S., & Barciszewski, J., (2019). Let food be your medicine: nutraceutical properties of lycopene, Food and Function, 10(6), 3090-3102. https://doi.org/10.1039/C9FO00580C |
||||
| Graff, R. E., Pettersson, A., Lis, R. T., Ahearn, T. U., Markt, S. C., Wilson, K. M., Rider, J. R., Fiorentino, M., Finn, S., Kenfield, S. A., Loda, M., Giovannucci, E. L., Rosner, B., & Mucci, L. A. (2016). Dietary lycopene intake and risk of prostate cancer defined by ERG protein expression. The American journal of clinical nutrition, 103(3), 851-860. https://doi.org/10.3945/ajcn.115.118703 |
||||
| Guo, Y., Fan, Z., Zhao, S., Yu, W., Hou, X., Nie, S., Xu, S., Zhao, C., Han, J., & Liu, X. (2023). Brain-targeted lycopene-loaded microemulsion modulates neuroinflammation, oxidative stress, apoptosis and synaptic plasticity in β-amyloid-induced Alzheimer's disease mice. Neurological Research, 45(8), 753-764. https://doi.org/10.1080/01616412.2023.2203615 |
||||
| Han, G.-M., Soliman, G. A., Meza, J. L., Islam, K. M. M., & Watanabe-Galloway, S. (2016). The influence of BMI on the association between serum lycopene and the metabolic syndrome. British Journal of Nutrition, 115(7), 1292-1300. https://doi.org/10.1017/S0007114516000179 |
||||
| Hazewindus, M., Haenen, G. R., Weseler, A. R., & Bast, A. (2012). The anti-inflammatory effect of lycopene complements the antioxidant action of ascorbic acid and α-tocopherol. Food Chemistry, 132(2), 954-958. https://doi.org/10.1016/j.foodchem.2011.11.075 |
||||
| He, Q., Zhou, W., Xiong, C., Tan, G., & Chen, M. (2015). Lycopene attenuates inflammation and apoptosis in post-myocardial infarction remodelling by inhibiting the nuclear factor-κB signalling pathway. Molecular Medicine Reports, 11(1), 374-378. https://doi.org/10.3892/mmr.2014.2676 |
||||
| Honda, M., Kudo, T., Kuwa, T., Higashiura, T., Fukaya, T., Inoue, Y., Kitamura, C., & Takehara, M. (2017). Isolation and spectral characterization of thermally generated multi-Z-isomers of lycopene and the theoretically preferred pathway to di-Z-isomers. Bioscience, biotechnology, and biochemistry, 81(2), 365-371. https://doi.org/10.1080/09168451.2016.1249454 |
||||
| Hsieh, M.-J., Huang, C.-Y., Kiefer, R., Lee, S.-D., Maurya, N., & Velmurugan, B. K. (2022). Cardiovascular disease and possible ways in which lycopene acts as an efficient cardio-protectant against different cardiovascular risk factors. Molecules, 27(10), 3235. https://doi.org/10.3390/molecules27103235 |
||||
| Ibrahim, M. S., Abdullahi, A., & Zage, A. U. (2025). Assessment of the effect of different preservation techniques on the level of antioxidant vitamins and total antioxidant capacity in tomato (Solanum lycopersicon). Scholarly Journal of Science and Technology Research & Development, 4(1), 49-60. | ||||
| Ibrahim, M. S., Ibrahim, Y. I., Mukhtar, Z. G., & Karatas, F. (2017). Amount of vitamin A, vitamin E, vitamin C, malondialdehyde, glutathione, ghrelin, beta-carotene, lycopene in fruits of Hawthorn, Midland (Crataegus laevigata). Journal of Human Nutrition & Food Science, 5(3), 1112-1117. | ||||
| Ismail, R. F., Hamed, M., & Sayed, A. E. D. H. (2023). Lycopene supplementation: effects on oxidative stress, sex hormones, gonads and thyroid tissue in tilapia Oreochromis niloticus during Harness® exposure. Frontiers in Physiology, 14, 1237159. https://doi.org/10.3389/fphys.2023.1237159 |
||||
| Jiang, H., Yin, Y., Wu, C. R., Liu, Y., Guo, F., Li, M., & Ma, L. (2019). Dietary vitamin and carotenoid intake and risk of age-related cataract. The American journal of clinical nutrition, 109(1), 43-54. https://doi.org/10.1093/ajcn/nqy270 |
||||
| Jomova, K., Alomar, S. Y., Alwasel, S. H., Nepovimova, E., Kuca, K., & Valko, M. (2024). Several lines of antioxidant defense against oxidative stress: antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Archives of Toxicology, 98(5), 1323-1367. https://doi.org/10.1007/s00204-024-03696-4 |
||||
| Jomova, K., Raptova, R., Alomar, S. Y., Alwasel, S. H., Nepovimova, E., Kuca, K., & Valko, M. (2023). Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and ageing. Archives of Toxicology, 97(10), 2499-2574. https://doi.org/10.1007/s00204-023-03562-9 |
||||
| Joung, H. R., Gang, G., & Go, G. W. (2023). Lycopene and cardiovascular health: A systematic review reveals promising benefits in blood pressure, lipid profiles, and oxidative stress. Industrial Food Engineering, 27(4), 271-277. https://doi.org/10.13050/foodengprog.2023.27.4.271 |
||||
| Kapała, A., Szlendak, M., & Motacka, E. (2022). The Anti-Cancer Activity of Lycopene: A Systematic Review of Human and Animal Studies. Nutrients, 14(23), 5152. https://doi.org/10.3390/nu14235152 |
||||
| Karaköy, Z., Cadirci, E., & Dincer, B. (2022). A New Target in Inflammatory Diseases: Lycopene. The Eurasian Journal of Medicine, 54(Suppl1), 23-28. https://doi.org/10.5152/eurasianjmed.2022.22303 |
||||
| Khan, U. M., Sevindik, M., Zarrabi, A., Nami, M., Ozdemir, B., Kaplan, D. N., Selamoglu, Z., Hasan, M., Kumar, M., Alshehri, M. M., & Sharifi-Rad, J. (2021). Lycopene: Food Sources, Biological Activities, and Human Health Benefits. Oxidative Medicine and Cellular Longevity, 2021, 2713511. https://doi.org/10.1155/2021/2713511 |
||||
| Maaz, M., Sultan, M. T., Khalid, M. U., Raza, H., Imran, M., Hussain, M., Al Abdulmonem, W., Alsagaby, S. A., Abdelgawad, M. A., Ghoneim, M. M., Khan, M. A., Yehuala, T. F., Selim, S., & Mostafa, E. M. (2025). A comprehensive review on the molecular mechanism of lycopene in cancer therapy. Food Science & Nutrition, 13(7), e70608. https://doi.org/10.1002/fsn3.70608 |
||||
| Mirahmadi, M., Aghasizadeh, M., Esmaily, H., Baharara, H., Mohammadi-bajgiran, M., Assaran-Darban, R., Ferns, G. A., Hadizaheh, F., & Mobarhan, M. G. (2023). The effects of lycopene intake on blood pressure and lipid profile of patients with metabolic syndrome; a randomized clinical trial. Journal of Food and Nutrition Research, 11(9), 602-607. https://doi.org/10.12691/jfnr-11-9-7 |
||||
| Mirahmadi, M., Azimi-Hashemi, S., Saburi, E., Kamali, H., Pishbin, M., & Hadizadeh, F. (2020). Potential inhibitory beffect of lycopene on prostate cancer. Biomedicine & Pharmacotherapy, 129, 110459. https://doi.org/10.1016/j.biopha.2020.110459 |
||||
| Montesano, D, Blasi, F, & Cossignani, L (2019). Lycopene and cardiovascular disease: An Overview. Annals of Short Reports. 2, 1033. | ||||
| Moran, N. E., Cichon, M. J., Riedl, K. M., Grainger, E. M., Schwartz, S. J., Novotny, J. A., Erdman, J. W., Jr, & Clinton, S. K. (2015). Compartmental and noncompartmental modelling of ¹³C-lycopene absorption, isomerisation, and distribution kinetics in healthy adults. The American journal of clinical nutrition, 102(6), 1436-1449. https://doi.org/10.3945/ajcn.114.103143 |
||||
| Mozos, I., Stoian, D., Caraba, A., Malainer, C., Horbańczuk, J. O., & Atanasov, A. G. (2018). Lycopene and vascular health. Frontiers in Pharmacology, 9, 521. https://doi.org/10.3389/fphar.2018.00521 |
||||
| Müller, L., Caris-Veyrat, C., Lowe, G., & Böhm, V. (2016). Lycopene and its antioxidant role in the prevention of cardiovascular diseases-a critical review. Critical Reviews in Food Science and Nutrition, 56(11), 1868-1879. https://doi.org/10.1080/10408398.2013.801827 |
||||
| Nouri, M., Amani, R., Nasr‐Esfahani, M., & Tarrahi, M. J. (2019). The effects of lycopene supplement on the spermatogram and seminal oxidative stress in infertile men: A randomized, double‐blind, placebo‐controlled clinical trial. Phytotherapy Research, 33(12), 3203-3211. https://doi.org/10.1002/ptr.6493 |
||||
| Ozkan, G., Günal-Köroğlu, D., Karadag, A., Capanoglu, E., Cardoso, S. M., Al-Omari, B., Calina, D., Sharifi-Rad, J., & Cho, W. C. (2023). A mechanistic updated overview on lycopene as potential anticancer agent. Biomedicine & Pharmacotherapy, 161, 114428. https://doi.org/10.1016/j.biopha.2023.114428 |
||||
| Petyaev, I. M., Pristensky, D. V., Morgunova, E. Y., Zigangirova, N. A., Tsibezov, V. V., Chalyk, N. E., Klochkov, V. A., Blinova, V. V., Bogdanova, T. M., Iljin, A. A., Sulkovskaya, L. S., Chernyshova, M. P., Lozbiakova, M. V., Kyle, N. H., & Bashmakov, Y. K. (2019). Lycopene presence in facial skin corneocytes and sebum and its association with circulating lycopene isomer profile: Effects of age and dietary supplementation. Food Science & Nutrition, 7(4), 1157-1165. https://doi.org/10.1002/fsn3.799 |
||||
| Prema, A., Janakiraman, U., Manivasagam, T., & Thenmozhi, A. J. (2015). Neuroprotective effect of lycopene against MPTP induced experimental Parkinson's disease in mice. Neuroscience Letters, 599, 12-19. https://doi.org/10.1016/j.neulet.2015.05.024 |
||||
| Przybylska, S. (2020). Lycopene-a bioactive carotenoid offering multiple health benefits: a review. International journal of food Science and Technology, 55(1), 11-32. https://doi.org/10.1111/ijfs.14260 |
||||
| Przybylska, S., & Tokarczyk, G. (2022). Lycopene in the prevention of cardiovascular diseases. International journal of molecular sciences, 23(4), 1957. https://doi.org/10.3390/ijms23041957 |
||||
| Rejali, L., Ozumerzifon, S., Nayeri, H., Williams, S., & Asgary, S. (2022). Risk reduction and prevention of cardiovascular diseases: biological mechanisms of lycopene. Bioactive Compounds in Health and Disease, 5(10), 202-221. https://doi.org/10.31989/bchd.v5i10.975 |
||||
| Sadek, K., Abouzed, T., & Nasr, S. (2016). Lycopene modulates cholinergic dysfunction, Bcl-2/Bax balance, and antioxidant enzymes gene transcripts in monosodium glutamate (E621) induced neurotoxicity in a rat model. Canadian Journal of Physiology and Pharmacology, 94(4), 394-401. https://doi.org/10.1139/cjpp-2015-0388 |
||||
| Sen, S. (2019). The chemistry and biology of lycopene: Antioxidant for human health. International Journal of Advancement in Life Sciences Research, 2(4), 08-14. https://doi.org/10.31632/ijalsr.2019v02i04.002 |
||||
| Shafe, M. O., Gumede, N. M., Nyakudya, T. T., & Chivandi, E. (2024). Lycopene: a potent antioxidant with multiple health benefits. Journal of nutrition and Metabolism, Volume 2024, Article ID 6252426, 17 pages. https://doi.org/10.1155/2024/6252426 |
||||
| Soleymaninejad, M., Joursaraei, S. G., Feizi, F., & Jafari Anarkooli, I. (2017). The effects of lycopene and insulin on histological changes and the expression level of Bcl‐2 family genes in the hippocampus of Streptozotocin‐induced diabetic rats. Journal of Diabetes Research, Volume 2017, Article ID 4650939, 9 pages. https://doi.org/10.1155/2017/4650939 |
||||
| Song, X., Luo, Y., Ma, L., Hu, X., Simal-Gandara, J., Wang, L. S., Bajpai, V. K., Xiao, J., & Chen, F. (2021, August). Recent trends and advances in the epidemiology, synergism, and delivery system of lycopene as an anti-cancer agent. In Seminars in cancer biology (Vol. 73, pp. 331-346). Academic Press. https://doi.org/10.1016/j.semcancer.2021.03.028 |
||||
| Tufail, T., Bader Ul Ain, H., Noreen, S., Ikram, A., Arshad, M. T., & Abdullahi, M. A. (2024). Nutritional benefits of lycopene and beta‐carotene: A comprehensive overview. Food Science & Nutrition, 12(11), 8715-8741. https://doi.org/10.1002/fsn3.4502 |
||||
| Türkler, C., Onat, T., Yildirim, E., Kaplan, S., Yazici, G., Mammadov, R., & Sunar, M. (2020). An experimental study on the use of lycopene to prevent infertility due to acute oxidative ovarian damage caused by a single high dose of methotrexate. Advances in Clinical and Experimental Medicine, 29(1), 5-11. https://doi.org/10.17219/acem/111809 |
||||
| Van Steenwijk, H. P., Bast, A., & de Boer, A. (2020). The Role of Circulating Lycopene in Low-Grade Chronic Inflammation: A Systematic Review of the Literature. Molecules, 25(19), 4378. https://doi.org/10.3390/molecules25194378 |
||||
| Viña, I., Robles, A., & Viña, J. R. (2025). Association between lycopene and metabolic disease risk and mortality: Systematic Review and Meta-Analysis. Life, 15(6), 944. https://doi.org/10.3390/life15060944 |
||||
| Walallawita, U. S., Wolber, F. M., Ziv-Gal, A., Kruger, M. C., & Heyes, J. A. (2020). Potential role of lycopene in the prevention of postmenopausal bone loss: evidence from molecular to clinical studies. International journal of molecular sciences, 21(19), 7119. https://doi.org/10.3390/ijms21197119 |
||||
| Wang, J., Li, L., Li, L., Shen, Y., & Qiu, F. (2024). Lycopene alleviates age-related cognitive deficit via activating liver-brain fibroblast growth factor-21 signalling. Redox Biology, 77, 103363. https://doi.org/10.1016/j.redox.2024.103363 |
||||
| Wang, S., Heng, K., Song, X., Zhai, J., Zhang, H., & Geng, Q. (2023). Lycopene improves bone quality in SAMP6 mice by inhibiting oxidative stress, cellular senescence, and the SASP. Molecular Nutrition & Food Research, 67(24), 2300330. https://doi.org/10.1002/mnfr.202300330 |
||||
| Wu, S., Guo, X., Shang, J., Li, Y., Dong, W., Peng, Q., Xie, Z., & Chen, C. (2022). Effects of lycopene attenuating injuries in ischemia and reperfusion. Oxidative Medicine and Cellular Longevity, Volume 2022, Article ID 9309327, 21 pages. https://doi.org/10.1155/2022/9309327 |
||||
| Xia, B., Zhu, R., Zhang, H., Chen, B., Liu, Y., Dai, X., Ye, Z., Zhao, D., Mo, F., Gao, S., Wang, X. D., Bromme, D., Wang, L., Wang, X., & Zhang, D. (2022). Lycopene improves bone quality and regulates AGE/RAGE/NF‐кB signaling pathway in high‐fat diet‐induced obese mice. Oxidative Medicine and Cellular Longevity, Volume 2022, Article ID 3697067, 14 pages. https://doi.org/10.1155/2022/3697067 |
||||
| Xu, X., Li, S., & Zhu, Y. (2021). Dietary intake of tomato and lycopene and risk of all-cause and cause-specific mortality: results from a prospective study. Frontiers in Nutrition, 8, 684859. https://doi.org/10.3389/fnut.2021.684859 |
||||
| Yamamoto, M., & Sugimoto, T. (2016). Advanced glycation end products, diabetes, and bone strength. Current osteoporosis reports, 14(6), 320-326. https://doi.org/10.1007/s11914-016-0332-1 |
||||
| Yamamoto, Y., Aizawa, K., Mieno, M., Karamatsu, M., Hirano, Y., Furui, K., Miyashita, T., Yamazaki, K., Inakuma, T., Sato, I., Suganuma, H., & Iwamoto, T. (2017). The effects of tomato juice on male infertility. Asia Pacific journal of clinical nutrition, 26(1), 65-71. | ||||
| Yanai, H. (2017). Anti-atherosclerotic effects of tomatoes. Functional Foods in Health and Disease, 7(6), 411-428. https://doi.org/10.31989/ffhd.v7i6.351 |
||||
| Yin, S., Xu, X., Li, Y., Fang, H., & Ren, J. (2025). Lycopene as a potential anticancer agent: Current evidence on synergism, drug delivery systems and epidemiology. Oncology Letters, 30(4), 462. https://doi.org/10.3892/ol.2025.15208 |
||||
| Yu, L., Wang, W., Pang, W., Xiao, Z., Jiang, Y., & Hong, Y. (2017). Dietary lycopene supplementation improves cognitive performances in tau transgenic mice expressing P301L mutation via inhibiting oxidative stress and tau hyperphosphorylation. Journal of Alzheimer's Disease, 57(2), 475-482. https://doi.org/10.3233/JAD-161216 |
||||
| Zhang, X., Zhou, Q., Qi, Y., Chen, X., Deng, J., Zhang, Y., Li, R., & Fan, J. (2024). The effect of tomato and lycopene on clinical characteristics and molecular markers of UV-induced skin deterioration: A systematic review and meta-analysis of intervention trials. Critical Reviews in Food Science and Nutrition, 64(18), 6198-6217. https://doi.org/10.1080/10408398.2022.2164557 |
||||