ISSN: 2536-7064
Model: Open Access/Peer Reviewed
DOI: 10.31248/JBBD
Start Year: 2016
Email: jbbd@integrityresjournals.org
https://doi.org/10.31248/JBBD2025.242 | Article Number: 7DC4B3753 | Vol.10 (5) - December 2025
Received Date: 27 September 2025 | Accepted Date: 29 October 2025 | Published Date: 30 December 2025
Authors: Ishaq, S. A.* , Yero, I. H. , Suleiman, S. A. and Chikwendu, L.
Keywords: phytochemicals., Anti-bacterial, Allium sativum (garlic)
The prevalence of counterfeit or substandard drugs is a widespread issue in the country today, particularly concerning antibiotics. This contributes significantly to the growing problem of antimicrobial resistance among organisms that were once susceptible to these drugs. Consequently, evaluating the antibacterial properties of natural alternatives such as garlic becomes essential to justify their incorporation into herbal medicine formulations. This study investigated the activity of garlic ethanol and chloroform extracts against clinically important bacterial isolates, namely Citrobacter sp., Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa, using the agar well diffusion method. Ciprofloxacin (1 mg/ml) served as the standard control, while the test concentrations of the extracts were prepared at 100 mg/ml, 50 mg/ml, 25 mg/ml, and 12.5 mg/ml. Phytochemical analysis revealed the presence of tannins, flavonoids, saponins, cardiac glycosides, steroids, alkaloids, volatile oils, balsams, and terpenoids. The results showed the least activity against Citrobacter spp. with 6.30 mm at 100 mg/ml. The garlic ethanol extract had an MIC value of 50 mg/ml, while the garlic chloroform extract had an MIC value of 100 mg/ml. The garlic ethanol and chloroform extracts had MBC values only at 100 mg/ml. The result of this study shows that the extracts had activity against the test organisms and as such could be a potential therapeutic against the tested organisms.
| Ababutain, I. M. (2011). Antimicrobial activity of ethanolic extracts from some medicinal plant. Australian Journal of Basic and Applied Sciences, 5(11), 678-683. | ||||
| Afolabi, B. T., Agu, G. C., & Onajobi, I. B. (2020). Phytochemical screening and antibacterial activity of Garcinia kola (hackel) and Cola nitida (vent) extracts. Nigerian Journal of Technology, 39(2), 379-385. https://doi.org/10.4314/njt.v39i2.8 |
||||
| Akrayi, H. F. (2014). Antibacterial effect of aqueous extracts of spices and herbs against bacteria isolated from frozen meat. Medical Journal of Islamic World Academy of Sciences, 22(1), 30-35. https://doi.org/10.12816/0008168 |
||||
| Akullo, J. O., Kiage, B., Nakimbugwe, D., & Kinyuru, J. (2022). Effect of aqueous and organic solvent extraction on in-vitro antimicrobial activity of two varieties of fresh ginger (Zingiber officinale) and garlic (Allium sativum). Heliyon, 8(9), 2405-8440. https://doi.org/10.1016/j.heliyon.2022.e10457 |
||||
| Al-Mufarrej, S. I., Qaid, M. M., Fazea, E. H., & Al-Baadani, H. A. B. (2019). Effects of clove powder supplementation on performance, blood biochemistry, and immune responses in broiler chickens. South African Journal of Animal Science, 49(5), 835-844. https://doi.org/10.4314/sajas.v49i5.6 |
||||
| Bakht, J., Muhammad, T., Ali, H., Islam, A., & Shafi, M. (2011). Effect of different solvent extracted sample of Allium sativum (Linn) on bacteria and fungi. African Journal of Biotechnology, 10(31), 5910-5915. https://doi.org/10.5897/AJB11.232 |
||||
| Belanger, C. R., & Hancock, R. E. (2021). Testing physiologically relevant conditions in minimal inhibitory concentration assays. Nature Protocols, 16(8), 3761-3774. https://doi.org/10.1038/s41596-021-00572-8 |
||||
| Belguith, H., Kthiri, F., Chati, A., Sofah, A. A., Hamida, J. B., & Landoulsi, A. (2010). Study of the effect of aqueous garlic extract (Allium sativum) on some Salmonella serovars isolates. Emirates Journal of Food and Agriculture, 22(3), 189-206. https://doi.org/10.9755/ejfa.v22i3.4889 |
||||
| Dimri, A. G., Chaudhary, S., Singh, D., Chauhan, A., & Aggarwal, M. (2020). Morphological and biochemical characterization of food borne gram-positive and gram-negative bacteria. Science Archives, 1(1), 16-23. | ||||
| Duhaniuc, A., Păduraru, D., Nastase, E. V., Trofin, F., Iancu, L. S., Sima, C. M., & Dorneanu, O. S. (2024). Multidrug-resistant bacteria in immunocompromised patients. Pharmaceuticals, 17(9), 1151. https://doi.org/10.3390/ph17091151 |
||||
| El-Saber Batiha, G., Magdy Beshbishy, A., G. Wasef, L., Elewa, Y. H., A. Al-Sagan, A., Abd El-Hack, M. E., Taha, A. E., M. Abd-Elhakim, Y., & Prasad Devkota, H. (2020). Chemical constituents and pharmacological activities of garlic (Allium sativum L.): A review. Nutrients, 12(3), 872. https://doi.org/10.3390/nu12030872 |
||||
| Gupta, S., & Ravishankar, S. (2005). Foodborne Pathogens and Disease. Winter, 2(4), 330-340. https://doi.org/10.1089/fpd.2005.2.330 |
||||
| Holzinger, A., Keiblinger, K., Holub, P., Zatloukal, K., & Müller, H. (2023). AI for life: Trends in artificial intelligence for biotechnology. New biotechnology, 74, 16-24. https://doi.org/10.1016/j.nbt.2023.02.001 |
||||
| Iotsor, B. I., Iseghohi, F., Oladoja, O. E., Raji, O. R., Yusuf, Z., & Oyewole, O. A. (2019). Antimicrobial activities of garlic and ginger extracts on some clinical isolates. Int. J. Biotechnol, 8(1), 59-65. https://doi.org/10.18488/journal.57.2019.81.59.65 |
||||
| Keskin, D., & Toroglu, S. (2011). Studies on antimicrobial activities of solvent extracts of different spices. Journal of Environmental Biology, 32(2), 251-256. | ||||
| Khokhar, K. M. (2023). Bulb development in garlic-a review. The Journal of Horticultural Science and Biotechnology, 98(4), 432-442. https://doi.org/10.1080/14620316.2022.2150326 |
||||
| Li, J., Dadmohammadi, Y., & Abbaspourrad, A. (2022). Flavor components, precursors, formation mechanisms, production and characterization methods: Garlic, onion, and chili pepper flavors. Critical Reviews in Food Science and Nutrition, 62(30), 8265-8287. https://doi.org/10.1080/10408398.2021.1926906 |
||||
| Mickymaray, S. (2019). Efficacy and mechanism of traditional medicinal plants and bioactive compounds against clinically important pathogens. Antibiotics, 8(4), 257. https://doi.org/10.3390/antibiotics8040257 |
||||
| Mohamad Farook, N. A., Argimón, S., Abdul Samat, M. N., Salleh, S. A., Sulaiman, S., Tan, T. L., Periyasamy, P., Lau, C. L., Ismail, Z., Muhammad Azami, N. A., & Neoh, H. M. (2022). Diversity and dissemination of methicillin-resistant Staphylococcus aureus (MRSA) genotypes in Southeast Asia. Tropical Medicine and Infectious Disease, 7(12), 438. https://doi.org/10.3390/tropicalmed7120438 |
||||
| Namadina, M. M., Mukhtar, A. U., Karaye, S. I., Musa, F. M., Bah, I. H., & Maitama, F. Y. (2021). Phytochemical constituents and antibacterial activities of indigenous chewing stick (Anogeissus leiocarpus) stem. Bayero journal of pure and applied Sciences, 14(1), 85-94. https://doi.org/10.4314/bajopas.v14i1.12 |
||||
| Pant, P., Pandey, S., & Dall'Acqua, S. (2021). The influence of environmental conditions on secondary metabolites in medicinal plants: A literature review. Chemistry & Biodiversity, 18(11), e2100345. https://doi.org/10.1002/cbdv.202100345 |
||||
| Ruhal, R., & Kataria, R. (2021). Biofilm patterns in gram-positive and gram-negative bacteria. Microbiological Research, 251, 126829. https://doi.org/10.1016/j.micres.2021.126829 |
||||
| Schumacher, A., Vranken, T., Malhotra, A., Arts, J. J. C., & Habibovic, P. (2018). In vitro antimicrobial susceptibility testing methods: agar dilution to 3D tissue-engineered models. European Journal of Clinical Microbiology & Infectious Diseases, 37(2), 187-208. https://doi.org/10.1007/s10096-017-3089-2 |
||||
| Süntar, I. (2020). Importance of ethnopharmacological studies in drug discovery: role of medicinal plants. Phytochemistry Reviews, 19(5), 1199-1209. https://doi.org/10.1007/s11101-019-09629-9 |
||||
| Tafinta, I. Y., Okoye, N. H., Batagarawa, U. S., Hamma, I. I., & Abubakar, M. (2020). Phytochemical screening and antifungal activities of cashew (Anacardium occidentale Linn.) leaves extract on some fungal isolates. Asian Plant Research Journal, 5(3), 30-37. https://doi.org/10.9734/aprj/2020/v5i330108 |
||||
| Thawabteh, A., Juma, S., Bader, M., Karaman, D., Scrano, L., Bufo, S. A., & Karaman, R. (2019). The biological activity of natural alkaloids against herbivores, cancerous cells and pathogens. Toxins, 11(11), 656. https://doi.org/10.3390/toxins11110656 |
||||
| V'kovski, P., Kratzel, A., Steiner, S., Stalder, H., & Thiel, V. (2021). Coronavirus biology and replication: implications for SARS-CoV-2. Nature Reviews Microbiology, 19(3), 155-170. https://doi.org/10.1038/s41579-020-00468-6 |
||||
| Wolde, T., Kuma, H., Trueha, K., & Yabeker, A. (2018). Anti-bacterial activity of garlic extract against human pathogenic bacteria. Journal of Pharmacovigilance, 6, 253. | ||||
| Yin, M. C., Chang, H. C., & Tsao, S. M. (2002). Inhibitory effects of aqueous garlic extract, garlic oil and four diallyl sulphides against four enteric pathogens. Journal of Food and Drug Analysis, 10(2), 120-126. https://doi.org/10.38212/2224-6614.2763 |
||||