ISSN: 2536-7072
Model: Open Access/Peer Reviewed
DOI: 10.31248/JASP
Start Year: 2016
Email: jasp@integrityresjournals.org
https://doi.org/10.31248/JASP2019.124 | Article Number: AC46B7712 | Vol.4 (2) - April 2019
Received Date: 04 February 2019 | Accepted Date: 28 February 2019 | Published Date: 30 April 2019
Authors: Willis. N. Ochilo* , Gideon. N. Nyamasyo , Dora Kilalo , Washington Otieno , Miriam Otipa , Florence Chege , Teresia Karanja and Eunice K. Lingeera
Keywords: Arthropod pests, pest management, smallholder farmers, spatio-temporal, tomato distribution.
In Kenya, tomato is cultivated for home consumption, as a cash crop, and a source of vitamins. In recent years, the growth rate of tomato production in the country has increased. Yields, however, continue to remain low due to a myriad of constraints, including incidences of arthropod pests. This paper catalogues arthropod pests of tomato in Kenya, establishes the pests’ distribution patterns in relation to spatial and temporal dimensions and documents practices employed by farmers for their management. The study relies on plant health clinics as primary providers of data. Relationship between variables is proved using multinomial logistic regression. A diverse range of arthropod pests was found to hamper tomato production in Kenya. Tomato leaf miner, whiteflies, and spider mites emerged as the major threats to the sustainability of tomato production. Most of the arthropod pests reported were associated with upper and lower midland agro-ecological zones. The reverse, however, was true for upper highland zones. For the management of arthropod pests, essentially, the use of synthetic pesticides was the preferred practice by farmers. The study underscores the need to consider variations in arthropod pests’ risk, both spatially and temporally when designing their management strategies. Also, alternative management procedures to the use of highly hazardous pesticides and better assessments of potential profit-loss to a smallholder for application and non-application of highly hazardous pesticides are required.
Akköprü, E. P., Atlıhan, R., Okut, H., & Chi, H. (2015). Demographic assessment of plant cultivar resistance to insect pests: A case study of the dusky-veined walnut aphid (hemiptera: Callaphididae) on five walnut cultivars. Journal of Economic Entomology, 108(2), 378-387. Crossref |
||||
Alto, B. W., & Juliano, S. A. (2001). Precipitation and temperature effects on populations of aedes albopictus (diptera: Culicidae): Implications for range expansion. Journal of medical entomology, 38(5), 646-656. Crossref |
||||
Anastacia, M. A., Thomas, K. K., & Hilda, W. N. (2011). Evaluation of tomato (lycopersicon esculentum l.) variety tolerance to foliar diseases at Kenya Agricultural Research Institute Centre-Kitale in North West Kenya. African Journal of Plant Science, 5(11), 676-681. | ||||
Asgedom, S., Struik, P. C., Heuvelink, E., & Araia, W. (2011). Opportunities and constraints of tomato production in Eritrea. African Journal of Agricultural Research, 6(4), 956-967. | ||||
Atwal, A. (2014). Pest population and assessment of crop losses. Indian Council of Agricultural Research Krishi Anusandhan Bhavan Pusa; New Delhi. | ||||
Boubou, A., Migeon, A., Roderick, G. K., & Navajas, M. (2011). Recent emergence and worldwide spread of the red tomato spider mite, tetranychus evansi: Genetic variation and multiple cryptic invasions. Biological Invasions, 13(1), 81-92. Crossref |
||||
Clottey, V., Karbo, N., & Gyasi, K. (2009). The tomato industry in northern ghana: Production constraints and strategies to improve competitiveness. African Journal of Food, Agriculture, Nutrition and Development, 9(6), 1436-1451. Crossref |
||||
De Bon, H., Huat, J., Parrot, L., Sinzogan, A., Martin, T., Malézieux, E., & Vayssières, J. F. (2014) Pesticide risks from fruit and vegetable pest management by small farmers in sub-saharan africa. A review. Agronomy for Sustainable Development, 34(4), 723-736. Crossref |
||||
Diver, S., Kuepper, G., & Born, H. (1999). Organic tomato production: ATTRA. | ||||
FAOSTAT (2018). Faostat dataAvailable at http://www.fao.org/faostat/en/#data/QC. Accessed 17th April, 2018. | ||||
Gebremariamd, G. (2015). Tuta absoluta: A global looming challenge in tomato production, review paper. Journal of Biology, Agriculture and Healthcare, 5(14), 57-62. | ||||
Gogo, E. O., Saidi, M., Itulya, F. M., Martin, T., & Ngouajio, M. (2012). Microclimate modification using eco-friendly nets for high-quality tomato transplant production by small-scale farmers in East Africa. HortTechnology, 22(3), 292-298. | ||||
Gornall, J., Betts, R., Burke, E., Clark, R., Camp, J., Willett, K., & Wiltshire, A. (2010). Implications of climate change for agricultural productivity in the early twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554), 2973-2989. Crossref |
||||
Hartz, T., Miyao, G., Mickler, J., Lestrange, M., Stoddard, S., Nunez, J., & Aegerter, B. (2008). Processing tomato production in California. UC Agriculture & Natural Resources Farm. Publication 7228. 5p. Crossref |
||||
Hashemi, S. M., Hosseini, S. M., & Damalas, C. A. (2009). Farmers' competence and training needs on pest management practices: Participation in extension workshops. Crop protection, 28(11), 934-939. Crossref |
||||
Hill, D. S. (1983). Agricultural insect pests of the tropics and their control. CUP Archive. | ||||
Imam, T., Yusuf, A., & Mukhtar, M. (2010). A survey of some insect pests of cultivated vegetables in three selected irrigation areas along Jakara river, Kano, Nigeria. International Journal of Biological and Chemical Sciences, 4(2), 400-406. Crossref |
||||
Jones, J. B., Zitter, T. A., Momol, T. M., & Miller, S. A. (Eds.). (2014). Compendium of tomato diseases and pests. Saint Paul, MN: American Phytopathological Society. Pp. 58-60. | ||||
Kamara, Y., Chikoye, D., Omoigui, L., & Dugje, I. (2007). Influence of insecticide spraying regimes and cultivar on insect pests and yield of cowpea in the dry savannas of north-eastern Nigeria Journal of Food Agriculture and Environment, 5(1), 154. | ||||
Kang, L., Chen, B., Wei, J. N., & Liu, T. X. (2009). Roles of thermal adaptation and chemical ecology in Liriomyza distribution and control. Annual Review of Entomology, 54, 127-145. Crossref |
||||
Kesavachandran, C. N., Fareed, M., Pathak, M. K., Bihari, V., Mathur, N., & Srivastava, A. K. (2009). Adverse health effects of pesticides in agrarian populations of developing countries. In Reviews of Environmental Contamination and Toxicology, Volume 200 (pp. 33-52): Springer. Crossref |
||||
Kirsh, V. A., Mayne, S. T., Peters, U., Chatterjee, N., Leitzmann, M. F., Dixon, L. B., Urban, D. A., Crawford, E. D., & Hayes, R. B. (2006). A prospective study of lycopene and tomato product intake and risk of prostate cancer Cancer Epidemiology and Prevention Biomarkers, 15(1), 92-98. | ||||
Krishnan, P., & Patnam, M. (2013). Neighbors and extension agents in ethiopia: Who matters more for technology adoption? American Journal of Agricultural Economics, 96(1), 308-327. Crossref |
||||
Migeon, A., Ferragut, F., Escudero-Colomar, L. A., Fiaboe, K., Knapp, M., de Moraes, G. J., Ueckermann, E., & Navajas, M. (2009). Modelling the potential distribution of the invasive tomato red spider mite, tetranychus evansi (acari: Tetranychidae). Experimental and Applied Acarology, 48(3), 199-212. Crossref |
||||
Migeon, A., Nouguier, E., & Dorkeld, F. (2010). Spider mites web: A comprehensive database for the tetranychidae. In Trends in acarology (pp. 557-560): Springer. Crossref |
||||
Ngowi, A. V. F., Mbise, T. J., Ijani, A. S. M., London, L., & Ajayi, O. C. (2007). Pesticides use by smallholder farmers in vegetable production in Northern Tanzania. Crop Protection (Guildford, Surrey), 26(11), 1617. Crossref |
||||
Ochilo, W. N., Otipa, M., Oronje, M., Chege, F., Lingeera, E. K., Lusenaka, E. & Okonjo, E. O. (2018). Pest management practices prescribed by frontline extension workers in the smallholder agricultural subsector of Kenya. Journal of Integrated Pest Management, 9(1), 15. Crossref |
||||
Oduor, K T. (2016). Agro-morphological and nutritional characterization of tomato landraces (lycopersicon species) in africa. University of Nairobi. | ||||
Olabiyi, T (2008). Pathogenicity study and nematoxic properties of some plant extracts on the root-knot nematode pest of tomato, Lycopersicon esculentum (l.) mill. Plant Pathology Journal, 7(1), 45-49. Crossref |
||||
Pedlowski, M. A., Canela, M. C., da Costa Terra, M. A., & de Faria, R. M. R. (2012). Modes of pesticides utilization by brazilian smallholders and their implications for human health and the environment. Crop protection, 31(1), 113-118. Crossref |
||||
Porter, J., Parry, M., & Carter, T. (1991). The potential effects of climatic change on agricultural insect pests. Agricultural and Forest Meteorology, 57(1-3), 221-240. Crossref |
||||
Roberts, N. (1989). Agricultural Extension in Africa. A World Bank Symposium. ERIC, | ||||
Rosenzweig, C., Iglesias, A., Yang, X., Epstein, P. R., & Chivian, E. (2001) Climate change and extreme weather events; implications for food production, plant diseases, and pests. Global Change and Human Health, 2(2), 90-104. Crossref |
||||
Royalty, R. N., & Perring, T. M. (1989). Reduction in photosynthesis of tomato leaflets caused by tomato russet mite (acari: Eriophyidae). Environmental Entomology, 18(2), 256-260. Crossref |
||||
Salas, J., & Mendoza, O. (1995). Biology of the sweetpotato whitefly (Homoptera: Aleyrodidae) on tomato. Florida Entomologist, 78(1), 154-160. Crossref |
||||
Skaljac, M, Zanic, K, Ban, S G, Kontsedalov, S and Ghanim, M (2010). Co-infection and localization of secondary symbionts in two whitefly species. BMC microbiology, 10(1), 142. Crossref |
||||
Talekar, N., & Shelton, A. (1993) Biology, ecology, and management of the diamondback moth Annual Review of Entomology, 38(1), 275-301. Crossref |
||||
Tonnang, H. E., Mohamed, S. F., Khamis, F., & Ekesi, S. (2015). Identification and risk assessment for worldwide invasion and spread of tuta absoluta with a focus on sub-saharan africa: Implications for phytosanitary measures and management. PloS one, 10(8), e0135283. Crossref |
||||
Toor, R. K., & Savage, G. P. (2005). Antioxidant activity in different fractions of tomatoes. Food research international, 38(5), 487-494. Crossref |
||||
Toroitich, F., Knapp, M., Nderitu, J., Olubayo, F., & Obonyo, M. (2014) Susceptibility of geographically isolated populations of the tomato red spider mite (tetranychus evansi baker & pritchard) to commonly used acaricides on tomato crops in Kenya. Journal of Entomological and Acarological Research, 46(1), 18-25. Crossref |
||||
Tropea Garzia, G., Siscaro, G., Biondi, A., & Zappalà, L. (2012). Tuta absoluta, a south american pest of tomato now in the eppo region: Biology, distribution and damage. EPPO Bulletin, 42(2), 205-210. Crossref |
||||
Umeh, V. C., Kuku, F. O., Nwanguma, E. I., Adebayo, O. S., & Manga, A. A. (2002). A survey of the insect pests and farmers' practices in the cropping of tomato in Nigeria. Tropicultura, 20(4), 181-186. | ||||
Williamson, S. (2003). Pesticide provision in liberalised Africa: out of control? (p. 15). Agricultural Research and Extension Network. | ||||
Zekeya, N., Chacha, M., Ndakidemi, P. A., Materu, C., Chidege, M., & Mbega, E. R. (2016). Tomato leaf miner (tuta absoluta meyrick 1917): A threat to tomato production in africa. Journal of Agriculture and Ecology Research International, 10(1), 1-10. Crossref |