ISSN: 2536-7072
Model: Open Access/Peer Reviewed
DOI: 10.31248/JASP
Start Year: 2016
Email: jasp@integrityresjournals.org
https://doi.org/10.31248/JASP2024.468 | Article Number: 6DBFC3DA1 | Vol.9 (3) - June 2024
Received Date: 10 June 2024 | Accepted Date: 28 June 2024 | Published Date: 30 June 2024
Authors: Daines L. Sanga1* , Andekelile S. Mwamahonje1 , Athuman J. Mahinda2 and Emmanuel A. kipanga1
Keywords: salinity, Environmental degradation, irrigated agriculture, sodicity
Soil salinization is a major challenge of irrigated agriculture with substantial impact on the sustainability of crop and food security. World-widely, salinization has been a major bottleneck to the expansion and advancement of irrigated farming, resulting in a significant environmental degradation, lower yields and food insecurity. The problem of soil salinity varies across the regions and it has more extensive implications in arid and semi-arid regions where the rate of evaporation is higher than precipitation. To minimize the problem, it is necessary to adopt effective management practices that reduce salinization process in irrigated agriculture. However, the effective management options need a thorough understanding of the problem itself, the way it occurs, and their contributory effects to various aspects of development. This review therefore, presents an ample description on soil salinization as a threat to the sustainability of crop production and food security in the semi-arid tropics. The review focuses on the causes, extent and distribution of salt affected soils under irrigated agriculture, influence of irrigation water on soil salinization, the effects of salinization on plant growth, crop production and soil productivity. Furthermore, the review highlights the impact of salinization on food security and social economic aspects. It also proposes management options that should be adopted to either minimize or remedy soil salinity to the desired level and increase soil quality in semi-arid areas.
Abbasi, H., Jamil, M., Haq, A., Ali, S., Ahmad, R., Malik, Z., & Parveen, Z. (2016). Salt stress manifestation on plants, mechanism of salt tolerance and potassium role in alleviating it: a review. Zemdirbyste-Agriculture, 103(2), 229-238. https://doi.org/10.13080/z-a.2016.103.030 |
||||
Abdel-Fattah, M. K. (2019). Reclamation of saline-sodic soils for sustainable agriculture in Egypt. Sustainability of Agricultural Environment in Egypt: Part II: Soil-Water-Plant Nexus. Pp. 69-92. https://doi.org/10.1007/698_2018_310 |
||||
Abdelhamid, M. T., Eldardiry, E. & El-Hady, M. A. (2013). Ameliorate salinity effect through sulphur application and its effect on some soil and plant characters under different water quantities. Journal of Agricultural Science, 4(1), 39-47. https://doi.org/10.4236/as.2013.41007 |
||||
Abduljalee, Y., Amiri, M., Amen, E. M., Salem, A., Ali, Z. F., Awad, A., Loczy, D., & Ghzal, M. (2024). Enhancing groundwater vulnerability assessment for improved Environmental Management: Addressing a criyicle environmental concern. Environmental Science and Pollution Research, 31, 19185-19205. https://doi.org/10.1007/s11356-024-32305-1 |
||||
Acosta-Motos, J. R., Ortuño, M. F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M. J., & Hernandez, J. A. (2017). Plant responses to salt stress: adaptive mechanisms. Agronomy, 7(1), 18. https://doi.org/10.3390/agronomy7010018 |
||||
Alcívar, M., Zurita-Silva, A., Sandoval, M., Muñoz, C., & Schoebitz, M. (2018). Reclamation of saline-sodic soils with combined amendments: impact on quinoa performance and biological soil quality. Sustainability, 10(9), 3083. https://doi.org/10.3390/su10093083 |
||||
Ali, E. F., Al-Yasi, H. M., Kheir., A. M. S. & Eissa, M. A. (2021). Effect of biochar on CO2 sequestration and productivity of pear millet plants grown in saline sodic soils. Journal of Science and plant Nutrition, 21(2), 897-907. https://doi.org/10.1007/s42729-021-00409-z |
||||
Amankwaa-Yeboah, P., Yeboah, S., Osei, G., Waaley, L., Kyeremateng, P., Agyeman, K., Akoriko, F. A., Adomako, J., Danquah, E. O. & Ampong, A. N. (2023). Critical attributes and considerations for selecting irrigation systems for wastewater. Journal of the Ghana Institution of Engineering, 23(2), 64-75. https://doi.org/10.56049/jghie.v23i2.56 |
||||
Amin, S., Ghadiri, H., Chen, C., & Marschner, P. (2016). Salt-affected soils reclamation carbon dynamics and biochar: A review. Journal of Soils and Sediments, 16(3), 939-953. https://doi.org/10.1007/s11368-015-1293-1 |
||||
Aravinthasamy, P., Karunanidhi, D., Subramani, T., Srinivasamoorthy, K., & Anand, B. (2020). Geochemical evaluation of fluoride contamination in groundwater from Shanmuganadhi River basin, South India: implication on human health. Environmental Geochemistry and Health, 42, 1937-1963. https://doi.org/10.1007/s10653-019-00452-x |
||||
Asad, S. Q., Tesfaye, E., & Melese, M. (2018). Prospects of alternative copping systems for salt-affected soils in Ethiopia. Journal of Soil Science and Environmental Management, 9(7), 98-107. https://doi.org/10.5897/JSSEM2018.0686 |
||||
Aslam, M. R., & Prathapar, S. A. (2009). Strategies to mitigate secondary salinization in the Indus Basin of Pakistan: A selective review. International Water Management Institute. Colombo, Sri Lanka. Research Report, 97. | ||||
Bacilio, M., Moreno, M., & Bashan, Y. (2016). Mitigation of negative effects of progressive soil salinity gradients by application of humic acids and inoculation with Pseudomonas stutzeri in a salt-tolerant and a salt-susceptible pepper. Applied Soil Ecology, 107, 394-404. https://doi.org/10.1016/j.apsoil.2016.04.012 |
||||
Balasankar, D., Praneetha. S., Arumugam, T., Jeyakumar, P., Manivannan, N., & Arulmozhiselvan, K. (2017). Genotypic Response of Chilli (Capsicum annuum L.) on Germination and Seedling Characters to Different Salinity Levels. International Journal of Current Microbiology Applied Sciences, 6(4), 2197-2205. https://doi.org/10.20546/ijcmas.2017.604.257 |
||||
Banyal, R., Rajkumar, M., Kumar, M., Yadav, R. K., & Dagar, J. C. (2017). Agroforestry for Rehabilitation and Sustenance of Saline Ecologies. Agroforestry Anecdotal to Modern Science, 3(16), 413-454. https://doi.org/10.1007/978-981-10-7650-3_16 |
||||
Basu, S., Clark, R. E., Bera, S., Casteel, C. L., & Crowder, D. W. (2021). Responses of pea plants to multiple antagonists are mediated by order of attack and phytohormone crosstalk. Journal of Molecular Ecology, 30, 4939-4948. https://doi.org/10.1111/mec.16103 |
||||
Batakanwa, F. J., Mahoo, H. F., & Kahimba, F. C. (2015). Influence of irrigation water quality on soil salinization in semi-arid areas: A case study of Makutupora, Dodoma-Tanzania. International Journal of Scientific and Engineering Research, 6(9), 2229-5518. | ||||
Bellido-Jim'enez, J. A., Est'evez, J., & Garc'ia-Mar'in, A. P. (2021). New machine learning approaches to improve reference evapotranspiration estimates using intra-daily temperature based variables in semi-arid region of Spain. Agricultural Water Management, 245, 106-558. https://doi.org/10.1016/j.agwat.2020.106558 |
||||
Bello, A. H., Suleiman, K., Alayafi, S. G. A. L., Solaimani, K. & Abo-Elyousr, A. M. (2021). Mittigating Soil Salinity Stress with Gypsum and Bio-organic amendments: A review. Agronomy Journal, 11(9), 1735. https://doi.org/10.3390/agronomy11091735 |
||||
Bello, S. K., & Yusuf, A. A. (2021). Phosphorus influences the performance of mycorrhiza and organic manure in maize production. Journal of Plant Nutrition, 44(5), 679-691. https://doi.org/10.1080/01904167.2020.1849295 |
||||
Berendse, F., van Ruijven, J., Jongejans, E., & Keesstra, S. (2015). Loss of plant species diversity reduces soil erosion resistance. Ecosystems, 18, 881-888. https://doi.org/10.1007/s10021-015-9869-6 |
||||
Berhane, G. G., & Chala, A. Q. (2017). Plant physiological stimulation by seeds salt priming in maize (Zea mays): Prospect for salt tolerance. African Journal of Biotechnology, 16(5), 209-223. https://doi.org/10.5897/AJB2016.15819 |
||||
Bin Yousaf, M. T., Nawaz, M. F., Yasin, G., Cheng, H., Ahmed, I., Gul, S., Rizwan, M., Rehim, A., Xuebin, Q., & Ur Rahman, S. (2022). Determining the appropriate level of farmyard manure biochar application in saline soils for three selected farm tree species. Plos One, 17(4), e0265005. https://doi.org/10.1371/journal.pone.0265005 |
||||
Borena, F. R., & Hassen, J. M. (2022). Impacts of Soil Salinity on Irrigation Potential: The Case of Middle Awash. Ethiopian Review. Open access Library Journal, 9(4), e8123. | ||||
Brevik, E. C., & Burgess, L. C. (2015). Soil: Influence on human health: Encyclopedia of environmental management. Jorgensen, S. V. (ed.). CRC Press. Pp. 1-13. https://doi.org/10.1081/E-EEM-120051138 |
||||
Buesa, I., Miras-Ávalos, J. M., De Paz, J. M., Visconti, F., Sanz, F., Yeves, A., Guerra, D., & Intrigliolo, D. S. (2021). Soil management in semi-arid vineyards: Combined effects of organic mulching and no-tillage under different water regimes. European Journal of Agronomy, 123, 126-198. https://doi.org/10.1016/j.eja.2020.126198 |
||||
Butcher, K., Wick, A. F., Dessutter, T., Chatterjee, A., & Harmon, J. (2016). Soil salinity: A threat to global food security. Agronomy Journal, 108(6), 2189-2200. https://doi.org/10.2134/agronj2016.06.0368 |
||||
Chagantii, V., Crohn, D., & Simunek, J. (2015). Leaching and reclamation of a biochar and compost amended saline-sodic soil with moderate SAR reclaimed water. Agricultural Water Management, 158(1), 255-265. https://doi.org/10.1016/j.agwat.2015.05.016 |
||||
Chatterjee, A., Geaumont, B., DeSutter, T., Hopkins, D. G., & Rakkar, M. (2015). Rapid shifts in soil organic carbon mineralization within sodic landscapes. Arid Land Resource Management Journal, 29, 255-263. https://doi.org/10.1080/15324982.2014.944958 |
||||
Chatterjee, S., Chakraborty, R., & Banerje, H. (2020). Economic impact assessment of conservation agriculture on small and marginal farm households in eastern, India. Journal of Agricultural and Applied Economic Research, 33, 127-138. https://doi.org/10.5958/0974-0279.2020.00024.5 |
||||
Chaudhary, V., & Satheeshkumar, S. (2018). Assessment of groundwater quality for drinking and irrigation purposes in arid areas of Rajasthan, India. Journal of Applied Water Science, 8, Article number 218. https://doi.org/10.1007/s13201-018-0865-9 |
||||
Chen, J., Wang, W. H., Wu, F. H., He, E. M., Liu, X., Shangguan, Z. P., & Zheng, H. L. (2015). Hydrogen sulfide enhances salt tolerance through nitric oxide-mediated maintenance of ion homeostasis in barley seedling roots. Journal of Sciences, 5, Article number 12516. https://doi.org/10.1038/srep12516 |
||||
Chiconato, D. A., Sausa-Junior, G. S., Mathias de Santo, M. D., & Munns, R. (2019). Adaptation of sugarcane plants to saline soils. Environmental and Experimental Botany, 162, 201-211. https://doi.org/10.1016/j.envexpbot.2019.02.021 |
||||
Connor, J. D., Schewabe, K., King, D., & Knapp, K. (2012). Irrigated agriculture and climate change: The influence of water supply variability and salinity on adaptation. Ecological Economics journal, 77(1), 147-157. https://doi.org/10.1016/j.ecolecon.2012.02.021 |
||||
Corwin, D. L. (2020). Climate change impacts on soil salinity in agricultural areas. European Journal of soil science, 72(2), 842-862. https://doi.org/10.1111/ejss.13010 |
||||
Corwin, D. L., & Scudiero, E. (2019). Review of soil salinity assessment for agriculture across multiple scale using proximal and/or remote sensors (1st Edition). USDA-ARS/UNL. p. 2148. Retrieved from https://digitalcommons. unl.edu/usdaarsfacpub/2148. https://doi.org/10.1016/bs.agron.2019.07.001 |
||||
Cuevas, J., Daliakopoulos, I. N., Fernando, M., Hueso, J. J., & Tsanis, I. K. (2019). A Review of Soil Improving Cropping Systems for Soil Salinization. Agronomy Journal, 9(6), 295. https://doi.org/10.3390/agronomy9060295 |
||||
Daba, A. W. & Qureshi, A. S. (2021). Review on of soil salinity and sodicity challenges to crop production in the low land irrigated areas of Ethiopia and its management strategies. Journal of Land Use Optimization, 10(12), 1377. https://doi.org/10.3390/land10121377 |
||||
Dagar, J. C. (2013). Greening salty and waterlogged lands through agroforestry systems for livelihood security and better environment. In Agroforestry systems in India: livelihood security & ecosystem services (pp. 273-332). New Delhi: Springer India. https://doi.org/10.1007/978-81-322-1662-9_9 |
||||
Daliakopoulos, I. N., Apostolakis, A., Wagner, K., Deligianni, A., Koutskoudis, D., Stamatakis, A., Tsanis, I. K. (2016). Effectiveness of Trichoderma harzianum in soil and yield conservation of tomato crops under saline irrigation. Catena, 175, 144-153. https://doi.org/10.1016/j.catena.2018.12.009 |
||||
De Vos, A., Bruning, B., Van Straten, G., Oosterbaan, R., Rozema, J., & Van Bodegom, P. (2016). Crop salt tolerance under controlled field conditions in the Netherlands, based on trials conducted. Salt Farms Texel. p. 39. | ||||
Deng, Y. P., Sun, C. T., Sun, Y. S., Zhang, J. P., Mi, Z. R., Mao, W. B., & Sun, Y. X. (2021). Water and Salt Distribution and Evaporation Characteristics of Coastal Saline Soils under Straw Mulching Conditions. China Rural Water Hydropower, 202, 128-133. | ||||
Devkota, M., Martius, C., Gupta, R. K., Devkota, K. P., McDonald, A. J., & Lamers, J. P. A. (2015). Managing soil salinity with permanent bed planting in irrigated production systems in Central Asia. Agricultural Ecosystem Environment, 202, 90-97. https://doi.org/10.1016/j.agee.2014.12.006 |
||||
Diacono, M., & Montemurro, F. (2015). Effectiveness of organic wastes as fertilizers and amendments in salt-affected soils. Journal of Agriculture, 5(2), 221-230. https://doi.org/10.3390/agriculture5020221 |
||||
El Hasini, S., Iben Halima, O., El Azzouzi, M., Douaik, A., Azim, K. & Zouahri, A. (2019). Organic and inorganic remediation of soils affected by salinity in the Sebkha of Sed El Mesjoune Marrakesh (Morocco). Soil and Tillage Research, 193, 153-160. https://doi.org/10.1016/j.still.2019.06.003 |
||||
El Mokh, F., Nagaz, K., Masmoudi, M., & Mechlia, N. B. (2014). Effects of surface and subsurface drip irrigation regimes with saline water on yield and water use efficiency of potato in arid conditions of Tunisia. Journal of Agriculture and Environment for International Development, 108(2), 227-246. | ||||
FAO & ITPS (2015). Status of the World's soil resources (SWSR) - Main report. Food and Agriculture Organization of the United Nations. Rome, Italy. | ||||
FAO (2003). The state of food insecurity in the world, Monitoring progress towards the World food summit and Millennium Goals. Food and agriculture Organizations of the United Nations. Rome, Italy. | ||||
FAO (2016). The state of food and agriculture. Food and Agriculture Organization of the United Nations report. Rome. | ||||
FAO (2020). Mapping of salt-affected soils: Technical Manual. Food and Agricultural Organization. Rome, Italy. | ||||
FAO (2021). The state of food security and nutrition in the world. Transforming food systems for food security, improved nutrition and affordable healthy diets for all. Rome Food and Agriculture Organization of the United Nations. Retrieved from https://doi.org/10.4060/cb4474en. https://doi.org/10.4060/cb4474en |
||||
FAO-AQUASTAT (2016). Country profile - United Republic of Tanzania Food and Agriculture Organization of the United Nations. Rome, Italy. | ||||
Farifteh, J., Farshad, A., & George, R. J. (2006). Assessing salt affected soils using remote sensing solute modelling and geophysics. Journal of Geoderma, 130(3), 191-206. https://doi.org/10.1016/j.geoderma.2005.02.003 |
||||
Farooq, M., Gogoi, N., Hussain, M., Barthakur, S., Paul, S., Bharadwai, N., Migdadi, H. M., Alghamdi, S. S., & Siddique, K. H. M. (2017). Plant Physiology and Biochemistry Effects, tolerance mechanisms and management of salt stress in grain legumes. Plant Physiology and Biochemistry, 118, 199-217. https://doi.org/10.1016/j.plaphy.2017.06.020 |
||||
Fathizad, H., Hakimzadch, M., Sodaiezadeh, H., Kerry, R. & Taghizadeh, R. (2020). Investigation of the spatial and temporal variation of soil salinity using random forests in the central desert of Iran. Journal of Geoderma, 10(16), 144-233. https://doi.org/10.1016/j.geoderma.2020.114233 |
||||
Faunt, C. C, Sneed, M., Traum, J. & Brandt, J. T. (2016). Water availability and land subsidence in the Central Valley, California, USA. Hydrogeology Journal, 24(3), 675-684. https://doi.org/10.1007/s10040-015-1339-x |
||||
Food and Agriculture Organization of the United Nations (2017) Report of the 25th session of the committee on agriculture, Rome, 21-30 Sept 2016. http://www.fao.org/3/a-mr949e.pdf. | ||||
Fraga, H., & Santos, J. A. (2018). Vineyard mulching as a climate change adaptation measure: Future simulations for Alentejo. Portugal Agricultural System, 164, 107-115. https://doi.org/10.1016/j.agsy.2018.04.006 |
||||
Freitas, A. M., Nair, V. D., & Harris, W. G. (2020). Biochar as influenced by feedstock variability: Implications and opportunities for phosphorus management. Frontiers in Sustainable Food systems, 4, 1-11. https://doi.org/10.3389/fsufs.2020.510982 |
||||
Gabriel, J. L., Almendros, P., Fernandez, C. H., & Quemada, M. (2012). The role of cover crops in irrigated systems: Soil salinity and Salt leaching. Agriculture Ecosystems and Environment, 158, 200-207. https://doi.org/10.1016/j.agee.2012.06.012 |
||||
Gabriel, J. L., Vanclooster, M. & Quemada, M. (2014). Integrating water, nitrogen, and salinity in sustainable irrigated systems: cover crops versus fallow irrigation. Journal of Irrigation Drainage Engeneers, 140, 14002. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000696 |
||||
Ganjegunte, G. K., Sheng, Z. & Clark, J. A. (2014). Soil salinity and sodicity appraisal by electromagnetic induction in soils irrigated to grow cotton, Land Degradation Development, 25, 228-235. https://doi.org/10.1002/ldr.1162 |
||||
Gebremeskel, T. G., Kioe, M., Meresa, E., Gebremedhin, T., & Girmay, A. (2018). Salinization pattern and its spatial distribution in the irrigated agriculture of Northern Ethiopia: An integrated approach of quantitative and spatial analysis. Agricultural Water Management, 206, 147-157. https://doi.org/10.1016/j.agwat.2018.05.007 |
||||
Haider, M. Z., & Hossain, M. Z. (2013). Impact of salinity on livelihood strategies of farmers. Journal of Soil Science and Plant Nutrition, 13(2), 417-431. | ||||
Hasanuzzaman, M., Bhuyan, M., Mahmud, J. A., Nahar, K., Mohsin, S. M., Parvin, K. & Fujita, M. (2018). Interaction of sulfur with phyto-hormones and signaling molecules in conferring abiotic stress tolerance to plants. Plant Signal Behavior, 3(1), 477-905. | ||||
Hoa, D. I., Eike, L. I., & Cory, W. (2020). Decision analysis of agroforestry options reveals adoption risks for resources-poor farmers. Agronomy for Sustainable Development, 40(3), 1-12. https://doi.org/10.1007/s13593-020-00624-5 |
||||
Hu, D., Li, R., & Dong, S. (2022). Maize (Zea mays L.) responses to salt stress in terms of root anatomy, respiration and ant oxidative enzyme activity. Journal of Plant Biology, 22, Article number 602. https://doi.org/10.1186/s12870-022-03972-4 |
||||
Huang, H., Reddy, N. G., Huang, X., Chen, P., Wang, P., Zhang, Y., & Garg, A. (2019). Effects of pyrolysis temperature, feedstock type and compaction of water retention of biochar amended soil. Scientific Reports, 11(1), 1-19. https://doi.org/10.1038/s41598-021-86701-5 |
||||
Ippolito, J. A., Cui, L., Kammann, C., Wrage-Mönnig, N., Estavillo, J. M., Fuertes-Mendizabal, T., Cayuela, M. L., Sigua, G., Novak, J., Spokas, K. & Borchard, N. (2020). Feedstock choice, pyrolysis temperature and type influence biochar characteristics. comprehensive Meta-Data Analysis, 2(4), 421-438. https://doi.org/10.1007/s42773-020-00067-x |
||||
Irakoze, W., Prodjinoto, H., Nijimbere, S., Bizimana, J. B., Birigimana, J., Rufyikiri, G., & Lutts, S. (2021). NaCl- and Na2So4 induced salinity differentially affect clay soil chemical properties and yield components of two Rice varieties. Agronomy Journal, 11(3), 1-15. https://doi.org/10.3390/agronomy11030571 |
||||
Joardar, J. C. & Basu, B. (2018). Mulching as a management tool for reducing salt stress in Bangladesh. Journal of Soil Science, 40(2), 15-25. | ||||
Kader, M. A., Singha, A., Begum, M. A., Jewel, A., Khan, F. H., & Khan, N. I. (2019). Mulching as water-saving technique in dry land agriculture. Bulletin of the National Research Centre, 43, 1-6. https://doi.org/10.1186/s42269-019-0186-7 |
||||
Kaledhonkar, M. J., Meena, B., & Sharma, P. C. (2019). Reclamation and nutrient management for salt affected soils. Indian Journal of fertilizers, 15, 566-575. | ||||
Kalhoro, N. A., Rajpar, I., Kalhoro, S. A., Ali, A., Raza, S., Ahmed, M., Kalhoro, F. A., Ramzan, M., & Wahid, F. (2016). Effect of Salts Stress on the Growth and Yield of Wheat (Triticum aes-tivum L.). American Journal of Plant Sciences, 7, 2257-2271. https://doi.org/10.4236/ajps.2016.715199 |
||||
Kashenge-Killenga, S., Meliyo, J., Urassa, G. & Kongo, V. (2016). Extent of salt-affected soils and their effects in irrigated and lowland rain-fed rice growing areas of southern Tanzania: In Climate Change and multi-dimensional Sustainability in Agriculture. Climate Change and Sustainability in Agriculture, Pp. 97-126. https://doi.org/10.1007/978-3-319-41238-2_6 |
||||
Kashenge-Killenga, S., Tngoona, P. & Derera, J. (2013). Morphological and physiological responses of Tanzania rice genotype under saline conditions and evaluation of traits associated with stress tolerance. International Society for Development and sustainability, 2(2), 1457-1475. | ||||
Kashenge-Killenga, S., Tngoona, P., Derera, J. & Kanyeka, Z. (2014). Farmers' perception of salt-affected soils and rice varieties preferences in the Northern -eastern Tanzania and their implications in breeding. International Journal of Development and Sustainability, 33(66), 2168-8662. | ||||
Ketehouli, T., Carther, K. F. I., Noman, M., Wang, F. W., Li, X. W., & Li, H. Y. (2019). Adaptation of plants to salt stress: characterization of Na+ and K+ transporters and role of CBL gene family in regulating salt stress response. Journal of Agronomy, 9(11), 687. https://doi.org/10.3390/agronomy9110687 |
||||
Khatun, M., Shuvo, M. A. R., Salam, M. T. B., & Rahman, S. H. (2019). Effect of organic amendments on soil salinity and the growth of maize (Zea mays L.). Plant Science Today, 6(2), 106-111. https://doi.org/10.14719/pst.2019.6.2.491 |
||||
Kim, H. S., Kim, K. R., Lee, S. H., Kunhikrishnan, A., Kim, W. I., & Kim, K. H. (2016). Effect of gypsum on exchangeable sodium percentage and electrical conductivity in the Daeho reclaimed tidal land soil in Korea. Journal of Soils Sediments, 18, 336-341. https://doi.org/10.1007/s11368-016-1446-x |
||||
Kul, R., Arjumend, T., Ekinci, M., Yildirim, E., Turan, M. & Argin, S. (2021). Biochar as an Organic soil conditioner for mitigating salinity stress in tomato. Soil Science and plant nutrition Journal, 67(6), 693-706. https://doi.org/10.1080/00380768.2021.1998924 |
||||
Kumar, P., & Sharma, P. K. (2020). Soil Salinity and food security in India. Frontiers in Sustainable Food Systems, 4, 533-781. https://doi.org/10.3389/fsufs.2020.533781 |
||||
Kumar, S., Raju, R., Sheoran, P., Sharma, R., Yadav, R. K., Singh, R. K. Sharma, P. C. & Chahal, V. P. (2020). Techno-economic evaluation of recharge structure as localized drainage option for sustainable crop production in sodic agro-ecosystems. Indian Journal of Agricultural Sciences, 90, 212-219. https://doi.org/10.56093/ijas.v90i1.98683 |
||||
Kumawat, K. C., Nagpal, S. & Sharma, P. (2022). Potential of plant growth-promoting rhizobacteria-plant interactions in mitigating salt stress for sustainable agriculture: A review. Pedosphere. 33(2), 223-245. https://doi.org/10.1016/S1002-0160(21)60070-X |
||||
Lastiri-Hernández, M. A., Alvarez-Bernal, D., Bermúdez-Torres, K., Cárdenas, G. C., & Ceja-Torres, L. F. (2019). Phytodesalination of a moderately saline soil combined with two inorganic amendments. Journal of Bragantia, 78, 579-586. https://doi.org/10.1590/1678-4499.20190031 |
||||
Leogrande, R., & Vtti, C. (2019). Use of organic amendment to reclaim saline and sodic soils: Arid Land Research and Management, 33(1), 1-21. https://doi.org/10.1080/15324982.2018.1498038 |
||||
Li, B., Wang, J., Yao, L., Meng, Y., Ma, X., Si, E., Ren, P., Yang, K., Shang, X. & Wang, H. (). Halogeton Glomeratus is a promising candidate for the phytoremediation of heavy metals- contaminated saline soils. Journal of Plant Sciences, 442(1), 323-331. https://doi.org/10.1007/s11104-019-04152-4 |
||||
Liu, H., Li, M., Zheng, X., Wang, Y., & Anwar, S. (2020). Surface salinization of soil under mulched drip irrigation. Water, 12(11), 3031. https://doi.org/10.3390/w12113031 |
||||
Machado, R. M. A., & Serralheiro, R. P. (2017). Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae, 3(2), 30. https://doi.org/10.3390/horticulturae3020030 |
||||
MAFSC (2013). National Agriculture policy, Ministry of Agriculture Food security and cooperatives, United Republic of Tanzania. | ||||
Mahanavelu, A., Naganna, S. R., & Al-Ansari, N. (2021). Irrigation induced salinity and sodicity hazards on soil and Ground water: An Overview of its causes, Impacts and mitigation strategies. Journal of Agriculture, 11(10), 193. https://doi.org/10.3390/agriculture11100983 |
||||
Majeed, A., & Muhammad, Z. (2019). A major agricultural problem - Causes, Impact on crop productivity and managemnet strategies. Journal of Plant Abiotic Stress Tolerance, 97, 83-99. https://doi.org/10.1007/978-3-030-06118-0_3 |
||||
Makoi, J. H., & Ndakidemi, P. A. (2007). Reclamation of sodic soils in northern Tanzania, using locally available organic and inorganic resources. African Journal of Biotechnology, 6(16), 1926-1931. https://doi.org/10.5897/AJB2007.000-2292 |
||||
Malhi, G. S., Kaur, M., & Kaushik, P. (2021). Impact of climate change on agriculture and its mitigation strategies: A review. Sustainability, 13(3), 1318. https://doi.org/10.3390/su13031318 |
||||
Manasa, P., Maitra, S. & Barman, S. (2020). Yield Attributes, yield, competitive ability and economics of summer maize-legume intercropping system. International journal of Agriculture Environment and Biotechnology, 13(1), 23-26. https://doi.org/10.30954/0974-1712.1.2020.16 |
||||
Mandal, S., Raju, R., Kumar, A., Kumar, P. & Sharma, P. C. (2018). Current status of research, technology response and policy needs of salt affected soils in India - A Review. Journal of Indian Society of Coastal Agricultural Research, 36(2), 40-53. | ||||
Manuel, R., Machado, A., & Serralheiro, R. P. (2017). Soil Salinity: Effect on growth and management practices to prevent and mitigate soil salinization. Journal of Horticulture, 3(2), 1-13. https://doi.org/10.3390/horticulturae3020030 |
||||
Mateo-sagasta, J., & Burke, J. (2011). Agriculture and water quality interactions. A Global overview. Solaw Background Thematic report. Pp. 46. | ||||
Mbark, S., Cerda, A., Brestic, M., Mahendra, R., Abdelly, C. & Pascual, J. A. (2017). Vineyard compost supplemented with Trichoderma Harzianum T78 improve saline soil quality. Journal of Land Degradation Development, 28, 1028-1037. https://doi.org/10.1002/ldr.2554 |
||||
McKenna, B. A., Kopittke, P. M., Macfarlane, D. C., Dalzell, S. A., & Menzies, N. W. (2019). Changes in soil chemistry after the application of gypsum and sulfur and irrigation with coal seam water. Journal of Geoderma, 337, 782-791. https://doi.org/10.1016/j.geoderma.2018.10.019 |
||||
Mehmood, S., Ahmed, W., Ikram, M., Imtiaz, M., Mahmood, S., Tu, S. & Chen, D. (2020). Chitosan modified biochar increases soybean (Glycine max 1.) resistance to salt-stress by augmen-ting root morphology, antioxidant defense mechanisms and the expression of stress-responsive genes. Journal of Plant, 9(9), 1-25. https://doi.org/10.3390/plants9091173 |
||||
Meliyo, J. L., Kashenge-Kilenga, S., Victor, K. M., Mfupe, B., Hiza, S., & Kihupi, A. L., Boman, B. J., Dick, W. (2016). Evaluation of salt affected soils for rice (Oryza sativa) production in Ndungu irrigation scheme Same district, Tanzania. Sustainable Agricultural Research, 6(1), 24-38. https://doi.org/10.5539/sar.v6n1p24 |
||||
Mkilima, T. (2023). Groundwater salinity and irrigation suitability in low-lying coastal areas. A case of Dar es Salaam, Tanzania. Watershed Ecology and the Environment, 5(8), 173-185. https://doi.org/10.1016/j.wsee.2023.07.002 |
||||
Montanarella, L. (2007). Trend in land degradation in Europe: In climate and land degradation. Pp. 83-104. https://doi.org/10.1007/978-3-540-72438-4_5 |
||||
Munns, R., & Gilliham, M. (2015). Salinity tolerance of crops - What is the cost? Tansley insight. The New Phytologist, 208(1), 668-673. https://doi.org/10.1111/nph.13519 |
||||
Nadeem, M. Y., Khan, I., Umar, W., Safeer, M., Chattha, M. U., & Saif, M. (2017). Kallar grass (Laptochloa fusca) "The salt grass" an important fodder crop to ameliorate salt-affected soils in Pakistan. Technology Times Journal, 8, 10-16. | ||||
NBS (2015). Environment Statistics 2014 - Tanzania Mainland. National Bureau of Statistics. Statistics for development. | ||||
NDSU (2014). Saline and sodic soils. North Dakota State University Extension Service. Research Extension Centre. Saline and Sodic Soils Bulletin No. 02. | ||||
Nzeyimana, I., Hartemink, A. E., Ritsema, C., Stroosnijder, L., Lwanga, E. H., & Geissen, V. (2017). Mulching as a strategy to improve soil properties and reduce soil erodibility in coffee farming systems of Rwanda. Catena, 149, 43-51. https://doi.org/10.1016/j.catena.2016.08.034 |
||||
Omar, M. M., Shitind, J. M., Massawe, B. H. J., Fue, K. G., Meliyo, J. L., & Pedersen, O. (2023). Salt affected soils in Tanzanian agricultural lands: Type of soils and extent of the problem. Environmental Resource Management, 9(1), 2765-8511. https://doi.org/10.1080/27658511.2023.2205731 |
||||
Omar, M. M., Shitindi, J. M., Massawe, B. H. J., Fue, K. G., Meliyo, J. L., & Pedersen, O. (2022). Exploring farmers' perception, knowledge and management techniques of salt affected soils to enhance rice production on small land holdings in Tanzania. Cogent Food and Agriculture, 8(1), 214-470. https://doi.org/10.1080/23311932.2022.2140470 |
||||
Omuto, C., Vargas, R., ElMobarak, A., Mohamed, N., Viatkin, K., & Yigini, Y. (2020). Mapping of salt-affected soils: Technical manual, FAO. Rome Italy, p. 151. | ||||
Paz, A., Hristov, B., Amezketa, E., Falsone, G., Zambujo, J., Canfora, L., Mastrorilli, M., Goncalves, M., Prins, P., & Ramos, T. (2020). Prevention, mitigation and adaptation strategies for soil salinization at farm level. Brussel: EIP-AGRI Focus Group soil salinization. https://www.researchgate.net/publication/ 342985779 | ||||
Phuong, N. T. K., Khoi, C. M., Ritz, K., Linh, T. B., Minh, D. T. T., & Toyota, K. (2020). Influence of rice husks biochar and compost amendments on salt contents and hydraulic properties of soil and rice yield in salt-affected fields. Agronomy Journal, 10(8), 1-23. https://doi.org/10.3390/agronomy10081101 |
||||
Prasad, K., Devkota, M., Rezaei, M. & Oosterbaan, R. (2022). Agricultura production in salt-affected soils of irrigated dry lands. Agricultural systems journal, 198(1), 1-16. https://doi.org/10.1016/j.agsy.2022.103390 |
||||
Pulido-Bosch, A., Rigol-Sanchez, J. P., Vallejos, A., Andreu, J. M., Ceron, J. C., Molina-Sanchez, L., & Sola, F. (2018). Impacts of agricultural irrigation on groundwater salinity. Environmental Earth Sciences, 77, 1-14. https://doi.org/10.1007/s12665-018-7386-6 |
||||
Qadir, G., Ahmad, K., Qureshi, M., Saqib, A., Zaka, M., Sarfraz, M., Warraich, I., & Ullah, S. (2017). Integrated use of inorganic and organic amendment for reclamation of salt affected soils. International Journal of Biosciences, 11(2), 1-10. | ||||
Qadir, M., Mateo-Sagaster, J., Jimenez, B., Siemens, J. & Hanjra, M. A. (2015). Environmental risks and cost-effective Risk Management of Wastewater in economic assets in an urbanising world. Pp. 55-72. https://doi.org/10.1007/978-94-017-9545-6_4 |
||||
Qadir, M., Quillérou, E., Nangia, V., Murtaza, G., Singh, M., Thomas, R. J., Drechsel, P. & Noble, A. D. (2014). Economics of salt-induced land degradation and restoration. Hal Open Science, 1(1), 1-27. https://doi.org/10.1111/1477-8947.12054 |
||||
Qiu, Y., Wang, Y., Fan, Y., Hao, X., Li, S. & Kang, S. (2023). Root, Yield and Quality of Alfalfa affected by soil salinity in North West China. Journal of Agriculture, 13(4), 750. https://doi.org/10.3390/agriculture13040750 |
||||
Rao, N. D., Riahi, K., & Grubler, A. (2014). Climate impacts of poverty eradication. National Climate Change, 4, 749-751. https://doi.org/10.1038/nclimate2340 |
||||
Rekta, K. (2024). Impact of salinity stress on Agricultural crops: Responses and Challenges. Journal of Fundamentals of soil science, 81(2), 19-32. | ||||
Riffat, A., & Ahmad, M. S. A. (2020). Alleviation of adverse effects of salt stress on growth of maize (Zea mays L.) by sulfur supplementation. Pakistan Journal of Botany, 52, 763-773. https://doi.org/10.30848/PJB2020-3(38) |
||||
Ritzema, H. P. (2016). Drain for grain: Managing salinity in irrigated lands. Agricultural water management, 176, 18-28. https://doi.org/10.1016/j.agwat.2016.05.014 |
||||
Ruto, W. S. (2018). Land use-land-cover changes in Saiwa Swamp watershed in Western Kenya. International Journal of Research in Environmental Science, 4(4), 1-7. | ||||
Saifullah, D. S., Naeem, A., Rengel, Z., & Naidu, R. (2017). Biochar application for the remediation of salt-affected soils: Challenges and opportunities. The Science of the Total Environment, 625(1), 320-335. https://doi.org/10.1016/j.scitotenv.2017.12.257 |
||||
Shahbaz, M., & Ashraf, M. (2013). Improving salinity tolerance in cereals. Critical Reviews in Plant Sciences, 32(4), 237-249. https://doi.org/10.1080/07352689.2013.758544 |
||||
Shahid, S. A., Zaman, M. & Heng, L. (2018). Soil salinity: Historical perspective and a world overview of the problem: Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques. Springer, New York, USA. Pp. 43-53. https://doi.org/10.1007/978-3-319-96190-3_2 |
||||
Shahid, S. A., Zaman, M., & Heng L. (2018b). Salinity and sodicity adaptation and mitigation options. In: Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques. International Atomic Energy Agency, 3, 55-89. https://doi.org/10.1007/978-3-319-96190-3_3 |
||||
Shalaby, O. A. E. S. (2018). Alleviation of salinity stress in red cabbage plants by urea and sulfur applications. Journal of Plant Nutrition, 41(12), 1597-1603. https://doi.org/10.1080/01904167.2018.1462387 |
||||
Shankar, V., & Evelin, H. (2019). Strategies for reclamation of saline soils. In: Microorganisms in saline environments: Strategies and functions, Springer, Cham. Pp. 439-449. https://doi.org/10.1007/978-3-030-18975-4_19 |
||||
Sharma, A., Rana, C., Singh, S., & Katoch, V. (2016). Soil salinity causes, effects and management in cucurbits: Handbook of cucurbits "growth, cultural practices and physiology. Taylor and Francis, CRC Press. Pp. 419-434. | ||||
Sharma, D. K., Chaudhari, S. K., & Singh, A. (2014). Agroforestry is a promising option. Journal Indian Farming, 63, 19-22. | ||||
Shawkhatuzamman, M., Sumona, R. R., Alam, Z., Majumder, P. N., Anka, N. & Jahan, A. K. H. (2023). Soil fertility management practices in coastal areas of Bangladesh. Research in Agriculture Livestock and fisheries, 10(1), 1-7. https://doi.org/10.3329/ralf.v10i1.66211 |
||||
Shemsanga, C., Nzibavuga, A., Muzuka, N., Martz, L., Komakech, H. C., Elisante, E., Kisaka, M., & Ntuza, C. (2017). Origin and mechanisms of high salinity in Hombolo Dam and groundwater in Dodoma municipality Tanzania. Journal of Applied Water Sciences, 7, 2883-2905. https://doi.org/10.1007/s13201-017-0569-6 |
||||
Sheoran, P., Kumar, A., Singh, A., Parjapat, K., Sharma, R., & Yadav, R. K. (2021). Pressmund Alleviates soil sodicity stress in a rice - Wheat rotation: Effects on soil properties, physiological adaptation and yield-related traits. Land Degradation and Development, 1(1), 1-14. | ||||
Shrestha, S., & Mahat, J. (2022). Sustainable food security: how to feed an increasing population? A review. INWASCON Technology Magazine, 4, 15-18. https://doi.org/10.26480/itechmag.04.2022.15.18 |
||||
Sileshi, A. A., & Kibebew, K. (2016). Status of salt affected soils, irrigation water quality and land suitability of dubti/tendaho area, North Eastern Ethiopia (Doctoral dissertation, Haramaya University). | ||||
Silva, M. L. D. S., Trevizam, A. R., Piccolo, M. C., & Furlan, G. (2014). Tomato production in function of sulfur does application. Rev. Bras. Technology. Applied Sciences Agrarias, 7, 47-54. https://doi.org/10.5935/PAeT.V7.N1.05 |
||||
Singh, A. (2015). Soil salinization and waterlogging: A threat to environment and agricultural sustainability. Journal of Ecology, 57, 128-130. https://doi.org/10.1016/j.ecolind.2015.04.027 |
||||
Singh, A., Sharma, D. K., Kumar, R., Kumar, A., Yadav, R. K., & Gupta, S. K. (2018). Soil salinity management in fruit crops: A review of options and challenges: Handbook of engineering practices for management of soil salinity. Apple Academic Press, p. 48. | ||||
Singh, K., Pandey, V. C., Singh, B., & Singh, R. R. (2012). Ecological restoration of degraded sodic lands through afforestation and cropping. Journal of Ecology and Engineers, 43, 70-80. https://doi.org/10.1016/j.ecoleng.2012.02.029 |
||||
Singh, M., Kukar, M. S., Irmak, S., & Jhala, A. J. (2022). Water use characteristics of weeds: Best practices and future directions. Frontiers in Plant Sciences, 12(79), 3389-4090. https://doi.org/10.3389/fpls.2021.794090 |
||||
Stamford, N. P., Figueiredo, M. V. B., Junior, S. S., Freitas, A. D. S., & Santos, C. R. S. (2015). Effect of gypsum and sulfur with Acidithiobacillus on soil salinity alleviation and on cowpea biomass and nutrient status as affected by PK rock bio fertilizer. Journal of Science and Horticulture, 192, 287-292. https://doi.org/10.1016/j.scienta.2015.06.008 |
||||
Stavi, I. (2020). On-site use of plant litter and yard waste as mulch in gardening and landscaping systems. Journal of Sustainability, 12(18), 7521. https://doi.org/10.3390/su12187521 |
||||
Stavi, I., Shem-Tov, R. G., & Lekach, J. (2017). Ancient to recent-past runoff harvesting agriculture in recharge play as of the hyper-arid Southern Israel. Water, 33(9), 912-991. https://doi.org/10.3390/w9120991 |
||||
Stavi, I., Thevs, N., & Priori, S. (2021). Soil salinity and sodicity in drylands: A review of causes, effects, monitoring, and restoration measures. Frontiers in Environmental Science, 10, 3389-7128. https://doi.org/10.3389/fenvs.2021.712831 |
||||
Thiam, S., Villamor, G. B., Faye, L. C. J., Bienvenue sehe, J. H., Diwediga, B., & Kyei-baffour, N. (2021). Monitoring land use and soil salinity changes in coastal landscapes. A case study from Senegal. Environmental Monitoring and Assessment Journal, 193, Article number 259. https://doi.org/10.1007/s10661-021-08958-7 |
||||
Tully, K., Sullivan, C., Weil, R., & Sanchez, P. (2015). The state of soil degradation in Sab-Saharan Africa: Baselines, trajectories and solutions. Journal of Sustainability, 7(6), 6523-6552. https://doi.org/10.3390/su7066523 |
||||
United Nation (2017.) The sustainable development goals report. Pp. 1-52. Retrieved from http://unstats.un.org/sdgs/report/2017. | ||||
United Nation (2020). The sustainable development goals report. Pp. 24. Retrieved from https//Unstats.un.org/sdgs/report/2020. | ||||
Ur-Rahman, S. (2022). Effect of organic amendments in soil on physiological and biochemical attributes of Vachellia nilotica and Dalbergia sissoo under saline stress. Journal of Plant Biology, 11(2), 228. https://doi.org/10.3390/plants11020228 |
||||
Ventura, Y., & Sagi, M. (2013). Halophyte crop cultivation: The case for Salicornia and sarcocornia. Journal Environmental and Experimental Botany, 92, 144-152. https://doi.org/10.1016/j.envexpbot.2012.07.010 |
||||
Wagner, K., Apostolakis, A., Daliakopoulos, I. N., & Tsanis, I. (2016). Can tomato inoculation with Trichoderma compensate yield and soil health deficiency due to soil salinity. EGU General Assembly Conference, p. 18. | ||||
Wallender, W. W., & Kenneth, T. K. (2012). Agricultural salinity assessment and management. In: American Society of Civil Engineers, p. 905. https://doi.org/10.1061/9780784411698 |
||||
Wang, S. J., Chen, Q., Li, Y., Zhuo, Y. Q., & Xu, L. Z. (2017). Research on saline-alkali soil amelioration with FGD gypsum. Journal of Resource Conservation Recycling, 121, 82-92. https://doi.org/10.1016/j.resconrec.2016.04.005 |
||||
Wang, W., Xu, Y., Chen, T., Xing, L., Xu, K., Xu, Y., Ji, D., Chen, C., & Xie, C. (2019). Regulatory mechanisms underlying the maintenance of homeostasis in Pyropia haitanensis under hypersaline stress conditions. Journal of Science and Total Environment, 662, 168-179. https://doi.org/10.1016/j.scitotenv.2019.01.214 |
||||
Weaver, T. B., Hulugalle, N. R., Ghadiri, H., & Harden, S. (2013). Quality of drainage water under irrigated cotton in vertisols of the lower Namoi Valley, New South Wales, Australia. Irrigation and Drainage Journal, 62, 107-114. https://doi.org/10.1002/ird.1706 |
||||
Whitney, C. W., Lanzanova, D., Muchiri, C., Shepherd, K. D., Rosenstock, T. S., Krawinkel, M., Tabuti, J. R. S., & Luendeling, E. (2018). Probabilistic decision tools for determining impacts of agricultural development policy on household nutrition. Earth's Future, 6, 359-372. https://doi.org/10.1002/2017EF000765 |
||||
Wichelns, D., & Qadir, M. (2014). Achieving sustainable irrigation requires effective management of salts, soil salinity, and shallow groundwater. Journal of Agriculture and Water Management, 157, 31-38. https://doi.org/10.1016/j.agwat.2014.08.016 |
||||
Wudu, A., & Mahider, W. (2020). Soil salinity and its management options in Ethiopia. Journal of Environmental and Earth science, 3(2), 1042. | ||||
Xu, J., Tang, X., Shao, H., & Wang, H. (2015). The foliar spray of Rhodo-pseudomonas palustris grown under Stevia residue extract promotes plant growth via changing soil microbial community. Journal of Soils and Sediments, 16, 916-923. https://doi.org/10.1007/s11368-015-1269-1 |
||||
Xu, N., Chu, Y., Chen, H., Li, X., Wu, Q., Jin, L., Wang, G., & H
Copyright © 2025 Integrity Research Journals. All rights reserved.
|