ISSN: 2536-7072
Model: Open Access/Peer Reviewed
DOI: 10.31248/JASP
Start Year: 2016
Email: jasp@integrityresjournals.org
https://doi.org/10.31248/JASP2024.484 | Article Number: 530C66181 | Vol.9 (6) - December 2024
Received Date: 05 August 2024 | Accepted Date: 10 October 2024 | Published Date: 30 December 2024
Authors: J. O. Adinde* , O. Ugwuanyi-Nnadi , O. J. Uche and U. J. Anieke
Keywords: Growth characteristics, multiple-trait selection, pawpaw, Rank Summation Index (RSI), yield characteristics.
Pawpaw (Carica papaya) is a tropical crop with significant economic, nutritional, and medicinal importance. However, its production in Nigeria is largely casual and subsistence-based, with many farmers relying on naturally growing plants due to a lack of knowledge of suitable cultivars for improved yield. This study was therefore aimed to evaluate the growth and yield characteristics of twelve pawpaw accessions in Nsukka, Southeast Nigeria, to select the most suitable accession using the Rank Summation Index (RSI) approach for improved production, food security and economic development. The accessions were collected from Kogi State and Enugu State, Nigeria, and evaluated using a randomized complete block design with three replications. Data were collected on some important growth and yield characters and analyzed using Analysis of Variance at a 5 per cent significant level. The results showed significant variations (p<0.05) among the accessions in the number of leaves per plant, stem girth, number of harvested fruits per plant, average fruit weight, and fruit yield per plant. The Rank Summation Index (RSI) was used to combine and rank the accessions based on their performance across those traits that showed significant variations. Accession unn10 with the lowest RSI score (12) was identified as the most superior, followed by unn12 with an RSI score of 14 and could therefore be selected for pawpaw production in the study area. The findings provide valuable information for farmers and researchers to improve pawpaw production and breeding programmes in Nigeria.
Aikpokpodion, P. O. (2012). Assessment of genetic diversity in horticultural and morphological traits among papaya (Carica papaya) accessions in Nigeria. Fruits, 67, 173. https://doi.org/10.1051/fruits/2012011 |
||||
Alara, O. R., Abdurahman, N. H., & Alara, J. A. (2020). Carica papaya: comprehensive overview of the nutritional values, phytochemicals and pharmacological activities. Advances in Traditional Medicine, 22, 17-47. https://doi.org/10.1007/s13596-020-00481-3 |
||||
Ara, N., Moniruzzaman, M., Begum, F., & Khatoon, R. (2016). Genetic divergence analysis in papaya (Carica papaya L.) genotypes. Bangladesh Journal of Agricultural Research, 41(4), 647-656. https://doi.org/10.3329/bjar.v41i4.30697 |
||||
Aravind, G., Bhowmik, D., Duraivel, S., & Harish, G. (2013). Traditional and medicinal uses of Carica papaya. Journal of Medicinal Plants Studies, 1, 7-15. | ||||
Blas, A. L. Ming, R., Liu, Z., Veatch, O. J., Paull, R. E., Moore, P. H. and Yu, Q. (2010). Cloning of the papaya chromoplast-specific lycopene β-Cyclase, CpCYC-b, controlling fruit flesh color reveals conserved microsynteny and a recombination hot spot. Plant Physiology, 152(4), 2013-2022. https://doi.org/10.1104/pp.109.152298 |
||||
Boshra, V., & Tajul, A. Y. (2013). Papaya-an innovative raw material for food and pharmaceutical processing industry. Health and the Environment Journal, 4(1), 68-75. | ||||
Brewer, S., Plotto, A., Bai, J., Crane, J., & Chambers, A. (2021). Evaluation of 21 papaya (Carica papaya L.) accessions in southern Florida for fruit quality, aroma, plant height, and yield components. Scientia Horticulturae, 288, 110387. https://doi.org/10.1016/j.scienta.2021.110387 |
||||
Chan-León, A. C., Estrella-Maldonado, H., Dubé, P., Ortiz, G. F., Espadas-Gil, F., May, C. T., Prado, J. R., Desjardins, Y., & Santamaría, J. M. (2017). The high content of β-carotene present in orange-pulp fruits of Carica papaya L. is not correlated with a high expression of the CpLCY-β2 gene. Food Research International, 100, 45-56. https://doi.org/10.1016/j.foodres.2017.08.017 |
||||
Coutinho, G., Pio, R., de Souza, F. B. M., da Hora Farias, D., Bruzi, A. T., & Guimarães, P. H. S. (2019). Multivariate analysis and selection indices to identify superior quince cultivars for cultivation in the tropics. HortScience, 54(8), 1324-1329. https://doi.org/10.21273/HORTSCI14004-19 |
||||
Crupi, P., Coletta, A., Milella, R. A., Palmisano, G., Baiano, A., La Notte, E., & Antonacci, D. (2010). Carotenoid and chlorophyll‐derived compounds in some wine grapes grown in Apulian region. Journal of Food Science, 75(4), S191-S198. https://doi.org/10.1111/j.1750-3841.2010.01564.x |
||||
da Silva, C. A., Nascimento, A. L., Ferreira, J. P. Schmildt, O., Malikouski, R. G., Alexandre, R. S., Ferreguetti, G. A., & Schmildt, E. R. (2017). Genetic diversity among papaya accessions. African Journal of Agricultural Research, 12(23), 2041-2048. https://doi.org/10.5897/AJAR2017.12387 |
||||
Demissie, T., Ali, A., & Zerfu, D. (2009). Availability and consumption of fruits and vegetables in nine regions of Ethiopia with special emphasis to vitamin A deficiency. Ethiopian Journal of Health Development, 23(3), 216-222. https://doi.org/10.4314/ejhd.v23i3.53242 |
||||
FAO (2023). Major tropical fruits market review - Preliminary results 2022. Rome. https://openknowledge.fao.org/server/api/core/bitstreams/852265a4-9006-4d54-a792-51f1d9c44673/content. | ||||
Fu, C. C., Han, Y. C., Fan, Z. Q., Chen, J. Y., Chen, W. X., Lu, W. J., & Kuang, J. F. (2016). The papaya transcription factor CpNAC1 modulates carotenoid biosynthesis through activating phytoene desaturase genes CpPDS2/4 during fruit ripening. Journal of Agricultural and Food Chemistry, 64(27), 5454-5463. https://doi.org/10.1021/acs.jafc.6b01020 |
||||
Fuentes, G., Santamaría, J. M. (2014). Papaya (Carica papaya L.): Origin, domestication, and production. In: Ming, R., Moore, P. (eds.). Genetics and genomics of papaya. Plant genetics and genomics: Crops and models, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8087-7_1 |
||||
GenStat Release 10.3DE, 2011. Discovery Edition 4 VSN International Ltd. Rothamsted Experimental Station, Howel, Hempstead, UK. | ||||
Khatun, M. N., Saeid, A., Mozumder, N. H. M. R. and Ahmed, M. (2023). Extraction, purification and characterization of papain enzyme from papaya. Food Research, 7(2), 241-247. https://doi.org/10.26656/fr.2017.7(2).723 |
||||
Koul, B., Baveesh, P., Chelsi, S., Arvind, K., Vinay, S., Dhananjay, Y., & Jun-O, J. (2022). Carica papaya L.: A tropical fruit with benefits beyond the Tropics. Diversity, 14(8), 683. https://doi.org/10.3390/d14080683 |
||||
Mulamba, N. N., & Mock, J. J. (1978). Improvement of yield potential of the Eto Blanco maize (Zea mays L.) population by breeding for plant traits. Egyptian Journal of Genetics and Cytology, 7(1), 40-51. | ||||
Nedeljković, M., Puška, A., Maksimović, A., & Suzić, R. (2023). Selection of the optimal apple variety for raising orchards using the methods of multi-criteria analysis. Erwerbs-Obstbau, 65(2), 201-214. https://doi.org/10.1007/s10341-022-00797-1 |
||||
Ocampo, J., d'Eeckenbrugge, G. C., Bruyère, S., de Bellaire, L. D. L., & Ollitrault, P. (2006). Organization of morphological and genetic diversity of Caribbean and Venezuelan papaya germplasm. Fruits, 61(1), 25-37. https://doi.org/10.1051/fruits:2006003 |
||||
Okoli, E. E. (2021). Exploitation of rank summation index for the selection of 21 maize hybrids for green maize production in South-eastern Nigeria. Journal of Bioscience and Biotechnology Discovery, 6(2), 13-18. https://doi.org/10.31248/JBBD2021.150 |
||||
Onwubiko, N. C, Uguru, M. I., & Chimdi, G. O. (2018). Selection for Yield Improvement in Bambara Groundnut (Vigna subterranea (L.) VERDC.). In: Proceedings of 5th Annual Conference of Crop Science Society of Nigeria. Pp. 356-368. | ||||
Picha, D. (2006, August). Horticultural crop quality characteristics important in international trade. In IV International Conference on Managing Quality in Chains-The Integrated View on Fruits and Vegetables Quality 712 (pp. 423-426). https://doi.org/10.17660/ActaHortic.2006.712.49 |
||||
Saengmanee, P., Burns, P., Chaisan, T., Thaipong, K., & Siriphanich, J. (2018). Genetic diversity of genes involved in the carotenoid pathway of Carica papaya L. and their expression during fruit ripening. Journal of Plant Biochemistry and Biotechnology, 27, 90-99. https://doi.org/10.1007/s13562-017-0419-5 |
||||
Sampaio Filho, J. S., Olivoto, T., Campos, M. D. S., & Oliveira, E. J. D. (2023). Multi-trait selection in multi-environments for performance and stability in cassava genotypes. Frontiers in Plant Science, 14, 1282221. https://doi.org/10.3389/fpls.2023.1282221 |
||||
Scheldeman, X., Willemen, L. L., d'Eeckenbrugge, G. C., Romeijn-Peeters, E., Restrepo, M. T., Motoche, J. R., Jiménez, D., Lobo, M., Medina, C. I., Reyes, C., Goetgebeur, P. (2007). Distribution, diversity and environmental adaptation of highland papayas (Vasconcellea spp.) in tropical and subtropical America. Biodiversity and Conservation, 16(6), 1867-1884. https://doi.org/10.1007/s10531-006-9086-x |
||||
Shen, Y. H., Yang, F. Y., Lu, B. G., Zhao, W. W., Jiang, T., Feng, L., Chen, X. J., & Ming, R. (2019). Exploring the differential mechanisms of carotenoid biosynthesis in the yellow peel and red flesh of papaya. BMC Genomics, 20, Article number 49. https://doi.org/10.1186/s12864-018-5388-0 |
||||
Teixeira, D. H. L., Oliveira, M. D. S. P. D., Gonçalves, F. M. A., & Nunes, J. A. R. (2012). Selection index for simultaneously improving fruit production components of assai palm. Pesquisa Agropecuária Brasileira, 47, 237-243. https://doi.org/10.1590/S0100-204X2012000200012 |
||||
Wall, M. M. (2006). Ascorbic acid, vitamin A, and mineral composition of banana (Musa sp.) and papaya (Carica papaya) cultivars grown in Hawaii. Journal of Food Composition and Analysis, 19(5), 434-445. https://doi.org/10.1016/j.jfca.2006.01.002 |