JOURNAL OF AGRICULTURAL SCIENCE AND PRACTICE
Integrity Research Journals

ISSN: 2536-7072
Model: Open Access/Peer Reviewed
DOI: 10.31248/JASP
Start Year: 2016
Email: jasp@integrityresjournals.org


Marker assisted gene introgression in to common bean (Phaseolus vulgaris l) against angular leaf spot (Pseudosercospora griseola) and anthracnose (Colletotrichum lindemuthianum)

https://doi.org/10.31248/JASP2021.277   |   Article Number: 1FC9DD392   |   Vol.6 (4) - August 2021

Received Date: 29 April 2021   |   Accepted Date: 10 July 2021  |   Published Date: 30 August 2021

Authors:  Melese Lema* , Hewan Demissie and Yayis Rezene

Keywords: 0.05 (p<0.78) and 0.03 (p<0.9) in genotypic and phenotypic selection respectively. The narrow sense heritability for ALS and ANT were 0.97 and 0.95 implying that selection for ALS and ANT can be done at early stage in a segregating population. Correlation, SSR and SCAR marker were used. Marker assisted backcrossing procedure was adopted and inheritances for resistant genes were characterized by using F2 and backcrosses. The Chi-square values showed no significant differences for ALS and ANT, Angular leaf spot (ALS) and Anthracnose (ANT) are important diseases of common bean in Ethiopia. This study was conducted to pyramid resistant genes for ALS and ANT diseases into advanced line and to evaluate isolines against ALS and ANT using marker assi, Phg1+phg2+co14+cbb qtl and Phg-1+co-14+cbb QTL exhibited the lowest mean disease score to the three pathogens indicating both a high degree and a broad spectrum of resistance. The study identified three isolines with all four desirable genes. In general, pyramiding multiple genes for durable resistance using MAS in combination with phenotypic selection is invaluable for breeding program.

Angular leaf spot (ALS) and Anthracnose (ANT) are important diseases of common bean in Ethiopia. This study was conducted to pyramid resistant genes for ALS and ANT diseases into advanced line and to evaluate isolines against ALS and ANT using marker assisted selection in combination with phenotypic selection. The parent AND277 donor of Phg-1 and Co-14 genes for ALS and ANT respectively and the recipient KT-ABC001 line was used for this experiment. In genotypic selection, SSR and SCAR marker were used. Marker assisted backcrossing procedure was adopted and inheritances for resistant genes were characterized by using F2 and backcrosses. The Chi-square values showed no significant differences for ALS and ANT, 0.05 (p<0.78) and 0.03 (p<0.9) in genotypic and phenotypic selection respectively. The narrow sense heritability for ALS and ANT were 0.97 and 0.95 implying that selection for ALS and ANT can be done at early stage in a segregating population. Correlation values for ALS (r = -0.65) and for ANT (r = -0.73) were obtained between phenotypic and molecular data respectively. Eight gene pyramid groups were developed and evaluated against ALS and ANT. The gene pyramid group means were significantly different from each other (p<0.01) of which, Phg1+phg2+co14+cbb qtl and Phg-1+co-14+cbb QTL exhibited the lowest mean disease score to the three pathogens indicating both a high degree and a broad spectrum of resistance. The study identified three isolines with all four desirable genes. In general, pyramiding multiple genes for durable resistance using MAS in combination with phenotypic selection is invaluable for breeding program.

Abawi, G. S. (1989). Root rots. In: Shwartz H. F., & Pastor-Corrales, M. A. Bean production problems in the tropics (pp. 105-158). CIAT, Cali, Colombia.
 
Allen, D. J., & Lenne J. M. (1998). Diseases as constraints to production of legumes in agriculture. In: Allen, D. J., & Lenne, J. M. (eds.). Pathology of food and pasture legumes. CAB International, Wallingford, UK. Pp. 1-61.
 
Alzate-Marin, A.L. and Sartorato, A. (2004). Analysis of the pathogenic variability of Colletotrichum lindemuthianum in Brazil. Annual Report Bean Improvement Crop, 47, 241-242.
 
Alzate-Marin, A. L., Bafa, G. S, de Paula Junior, T. J., Carvalho, G. A., Baros, E. G., & Moreira, M. A. (1997). Inheritance of anthracnose resistance in common bean differential cultivar AB 136. Plant Diseases, 81, 996-998.
Crossref
 
Amaro, G. B., Abreu, Â. D. F. B., Ramalho, M. A. P., & Silva, F. B. (2007). Phenotypic recurrent selection in the common bean (Phaseolus vulgaris L) with carioca-type grains for resistance to the fungi Phaeoisariopsis griseola. Genetics and Molecular Biology, 30(3), 584-588.
Crossref
 
Aparício, B. H. E. (1998). Caracterizacion de la diversidad molecular y la virulencia de aislamientos del hongo. Phaeoisariopsis griseola.
 
Beebe, S., Ramirez, J., Jarvis, A., Rao, I. M., Mosquera, G., Bueno, J. M., & Blair, M. W. (2011). Genetic improvement of common beans and the challenges of climate change. In: Crop adaptation to climate change, Pp. 356-369.
Crossref
 
Blair, M. W., Buendía, H. F., Giraldo, M. C., Métais, I., Peltier, D. (2008). Characterization of AT-rich microsatellite markers for common bean (Phaseolus vulgaris L.) based on screening of non-enriched small insert genomic libraries. Theoretical and Applied Genetics, 118(1), 91-103.
Crossref
 
Bliss, F.A. (1980). Common bean. In: Fehr, W. R, & Hadley, H. H. (eds.). Hybridization of crop plants. Crop Science Society of America, Madison, WI. Pp. 273-284.
Crossref
 
Buishand, T. J. (1956). The crossing of beans (Phaseolus spp.). Euphytica, 5(1), 41-50.
Crossref
 
Broughton, W. J., Hernandez, G., Blair, M., Beebe, S., Gepts, P., & Vanderleyden, J. (2003). Beans (Phaseolus spp.)-model food legumes. Plant and Soil, 252(1), 55-128.
Crossref
 
Burkett-Cadena, M., Kokalis-Burelle, N., Lawrence, K. S., Van Santen, E., & Kloepper, J. W. (2008). Suppressiveness of root-knot nematodes mediated by rhizobacteria. Biological Control, 47(1), 55-59.
Crossref
 
Caixeta, E. T., Borém, A., & Kelly, J. D. (2005). Development of microsatellite markers based on BAC common bean clones. Crop Breeding and Applied Biotechnology, 5(2), 125-133.
Crossref
 
Carvalho, G. A., Paula, T. J., Alzate-Marin, A. L., Nietsche, S., de Barros, E. G., & Moreira, M. A. (1998). Inheritance of resistance to angular leaf spot of common bean in AND 277 to race 63-23 of Phaeoisariopsis griseola and identification of a RAPD marker linked to the resistance gene. Fitopatol Bras, 23, 482-485.
 
Castro, A. J., Chen, X., Hayes, P. M., & Johnston, M. (2003). Pyramiding quantitative trait locus (QTL) alleles determining resistance to barley stripe rust: effects on resistance at the seedling stage. Crop Science, 43(2), 651-659.
Crossref
 
Central Statistical Authority (CSA) (2010). Area under production of major crops. Statistical Bulletin. 245, Addis Ababa, Ethiopia.
 
Chataika, B. Y., Bokosi, J. M., Kwapata, M. B., Chirwa, R. M., Mwale, V. M., Mnyenyembe, P., & Myers, J. R. (2010). Performance of parental genotypes and inheritance of Angular Leaf Spot (Phaeosariopsis griseola) resistance in the common bean (Phaseolus vulgaris). African Journal of Biotechnology, 9(28), 4398-4406.
 
Chen, X. M., Line, R. F., & Leung, H. (1993). Relationship between virulence variation and DNA polymorphism in Puccinia striiformis. Phytopathology, 83(12), 1489-1497.
Crossref
 
CIAT (1997). Bean Programme Annual Report (1995). Working document, No 163.
 
Clare, M. M., Melis, R., Dereta, J., Laing, M., & Buruchara, R. A. (2010). Identification of sources of resistance to Fusarium root rot among selected common bean lines in Uganda. Journal of Animal & Plant Sciences, 7(3), 876-891.
 
De Jesus, W. C., Do Vale, F. X. R., Coelho, R. R., Hau, B., Zambolim, L., Costa, L. C., & Filho, A. B. (2001). Effects of angular leaf spot and rust on yield loss of Phaseolus vulgaris. Phytopathology, 91(11), 1045-1053.
Crossref
 
Deeksha, J., Hooda, K. S., Bhatt, J. C., Mina, B. L., & Gupta, H. S. (2009). Suppressive effects of composts on soil-borne and foliar diseases of French beans in the field in the western Indian Himalayas. Crop Protection, 28(7), 608-615.
Crossref
 
Fernández, M. T., Fernandez, M., Casares, A., Rodriguez, R., & Fueyo, M. (2000). Bean germplasm evaluation for anthracnose resistance and characterization of agronomic traits: A new physiological strain of Colletotrichum lindemuthianum infecting Phaseolus vulgaris L. in Spain. Euphytica, 114(2), 143-149.
Crossref
 
Ferreira, C. F., Borém, A., Carvalho, G. A., Nietsche, S., Paula, T. J., Barros, E. G., & Moreira, M. A. (2000). Inheritance of angular leaf spot resistance in common bean and identification of a RAPD marker linked to a resistance gene. Crop Science, 40(4), 1130-1133.
Crossref
 
Habtu, A., Sache, I., & Zadoks, J. C. (1996). A survey of cropping practices and foliar diseases of common beans in Ethiopia. Crop Protection, 15(2), 179-186.
Crossref
 
Improving common bean productivity: An analysis of socio-economic factors in Ethiopia and Eastern Kenya. Baseline Report Tropical legumes II. Centro Internacional de Agricultura Tropical-CIAT. Cali, Colombia, 126.
 
Mahuku, G. S., Jara, C., Cajiao, C., & Beebe, S. (2003). Sources of resistance to angular leaf spot (Phaeoisariopsis griseola) in common bean core collection, wild Phaseolus vulgaris and secondary gene pool. Euphytica, 130(3), 303-313.
Crossref
 
Miklas, P. N., Fourie, D., Wagner, J., Larsen, R. C., & Mienie, C. M. (2009). Tagging and Mapping Pse‐1 Gene for Resistance to Halo Blight in Common Bean Differential Cultivar UI‐3. Crop Science, 49(1), 41-48.
Crossref
 
Miklas, P. N., Coyne, D. P., Grafton, K. F., Mutlu, N., Reiser, J., Lindgren, D. T., & Singh, S. P. (2003). A major QTL for common bacterial blight resistance derives from the common bean great northern landrace cultivar Montana No. 5. Euphytica, 131(1), 137-146.
Crossref
 
Miller, T., Gepts, P., Kimmo, S., Arunga, E., Chilagane, L. A., Nchimbi-Msolla, S., & Tedla, Y. R. (2018). Alternative markers linked to the Phg-2 angular leaf spot resistance locus in common bean using the Phaseolus genes marker database. African Journal of Biotechnology, 17(26), 818-828.
Crossref
 
Mortensen, C. N. (2005). Detection of Xanthomonas oryzae pv. oryzae from rice seeds by liquid assay. In: Seed Health Testing for Bacterial Pathogens. Danish Seed Health Centre for developing countries, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Copenhagen, Denmark. Pp. 65-68.
 
Mukeshimana, G., Pa˜neda, A., Rodriguez, C., Ferreira, J. J., Giraldez, R., & Kelly, J. D. (2005). Markers linked to the bc-3 gene conditioning resistance to bean common mosaic potyviruses in common bean. Euphytica 144:291-299
Crossref
 
Mutlu, N., Miklas, P., Reiser, J., & Coyne, D. (2005). Backcross breeding for improved resistance to common bacterial blight in pinto bean (Phaseolus vulgaris L.). Plant Breeding, 124(3), 282-287.
Crossref
 
Namayanja, A., Buruchara, R., Mahuku, G., Rubaihayo, P., Kimani, P., Mayanja, S., & Eyedu, H. (2006). Inheritance of resistance to angular leaf spot in common bean and validation of the utility of resistance linked markers for marker assisted selection out side the mapping population. Euphytica, 151(3), 361-369.
Crossref
 
Nietsche, S., Borém, A., Carvalho, G. A., Rocha, R. C., Paula Jr, T. J., De Barros, E. G., & Moreira, M. A. (2000). RAPD and SCAR markers linked to a gene conferring resistance to angular leaf spot in common bean. Journal of Phytopathology, 148(2), 117-121.
Crossref
 
Pastor-Corrales, M. A., & Tu, J. C. (1989). Anthracnose (pp. 77-104). In: Schwartz H. F., & Pastor-Corrales, M. A. (eds.). 2nd ed. Bean production problems in the tropics. CIAT, Cali, Colombia. 560pp
 
Ragagnin, V., Sanglard, D., de Souza, T. L., Costa, M., Moreira, M., & Barros, E. (2005). A new inoculation procedure to evaluate angular leaf spot disease in bean plants (Phaseolus vulgaris L.) for breeding purposes. Bean Improvement Cooperative, 48, 90-91.
 
Rezene, Y., Tesfaye, K., Mukankusi, C., Arunga, E., & Gepts, P. (2018). Simple and rapid detached leaf technique for screening common beans (Phaseolus vulgarise L.) in vitro against angular leaf spot (Pseudocercospora griseola) disease. African Journal of Biotechnology, 17(35), 1076-1081.
Crossref
 
Sartorato, A., Nietsche, S., Barros, E. G., & Moreira, M. A. (1999). Scar marker linked to angular leaf spot resistance gene in common bean. Annual report of the bean improvement cooperative. 42, 23-24.
 
Singh, S. P., Gepts, P., & Debouck, D. G. (1991). Races of common bean (Phaseolus vulgaris, Fabaceae). Economic Botany, 45(3), 379-396.
Crossref
 
Teixeira, F. F., dos Santos, J. B., Ramalho, M. A. P., Abreu, Â., Guimarães, C. T., & de Oliveira, A. C. (2005). QTL mapping for angular leaf spot in common bean using microssatellite markers. Embrapa Milho e Sorgo-Artigo em periódico indexado (ALICE). Crop Breeding and Applied Biotechnology, 5(3), 272-278
Crossref
 
Tesfaye, B. (1997). Loss assessment study on haricot bean due to Anthracnose. Pest Management Journal of Ethiopia, 1(1&2), 69-72.
 
Wortmann, C. S., Brink, M., & Belay, G. (2006). Phaseolus vulgaris L. (common bean). Record from PROTA4U. Brink, M. & Belay, G. (Editors). PROTA (Plant Resources of Tropical Africa/Ressources végétales de l'Afrique tropicale), Wageningen, Netherlands.
 
Xu, Y., & Crouch, J. H. (2008). Marker‐assisted selection in plant breeding: From publications to practice. Crop Science, 48(2), 391-407.
Crossref
 
Ye, G., & Smith, F.K. (2008). Marker-assisted gene pyramiding for inbred line development: basic principles and practical guidelines. International Journal of Plant Breeding, 2(1),1-10.
 
Yesuf, M. (2005). Seed borne nature of Colletotrichum lindemuthianum and its epidemic on common beans in the major bean growing areas of Ethiopia. A PhD Thesis in Tropical Agriculture. Graduate School, Kasetsart University.
 
e Silva, L. O., Singh, S. P., & Pastor-Corrales, M. A. (1989). Inheritance of resistance to bacterial blight in common bean. Theoretical and applied genetics, 78, 619-624.
Crossref