ISSN: 2536-7072
Model: Open Access/Peer Reviewed
DOI: 10.31248/JASP
Start Year: 2016
Email: jasp@integrityresjournals.org
https://doi.org/10.31248/JASP2025.542 | Article Number: 1E5E40EB2 | Vol.10 (5) - October 2025
Received Date: 12 August 2025 | Accepted Date: 12 September 2025 | Published Date: 30 October 2025
Authors: Rukaiya Aliyu Sami* , Louis Aaron Obonyilo and Daniel Afang Aba
Keywords: heritability, Sub-Saharan Africa., Genotypic coefficient of variation (GCV), high soil nitrogen, low soil nitrogen, phenotypic coefficient of variation (PCV)
Sorghum is a significant cereal crop in sub-Saharan Africa, but its production is hindered by challenges stemming from poor soil fertility, particularly low nitrogen levels. Low soil nitrogen (N) availability is a major constraint to sorghum (Sorghum bicolor [L.] Moench) productivity, particularly in sub-Saharan Africa. Eighty-one sorghum genotypes were screened across two locations: Samaru and Minjibir in 2022. A 9 x 9 lattice design with two replications was used for the experiment. Data collected on yield and agronomic traits were subjected to analysis of variance and analysed using R and SAS software. The results revealed substantial variations among the genotypes for traits such as plant height, leaf death, panicle weight, days to 50% flowering, days to maturity, lodging rating, desirability rating, and yield, both under optimal soil nitrogen levels and low soil nitrogen levels. Notably, there were significant genetic variances in all the traits except 100 seed weight. Yield had a phenotypic coefficient of variation (PCV) of 96.20% and a genotypic coefficient of variation (GCV) of 44.86% at Samaru under low soil nitrogen. While at Minjibir yield had a PCV value of 92% and a GCV value of 53% under low soil nitrogen. The study reveals substantial genetic variation among sorghum genotypes under low soil nitrogen, with grain yield exhibiting high GCV and heritability values, indicating its reliability for selecting tolerant genotypes.
| Adu, G. B., Badu-Apraku, B., & Akromah, R. (2021). Strategies for selecting early maturing maize inbred lines for hybrid production under low soil nitrogen and striga infestation. Agronomy, 11(7), 1309. https://doi.org/10.3390/agronomy11071309 |
||||
| Amare, K., Zeleke, H., & Bultosa, G. (2015). Variability for yield, yield related traits and association among traits of sorghum (Sorghum Bicolor (L.) Moench) varieties in Wollo, Ethiopia. Journal of Plant Breeding and Crop Science, 7(5), 125-133. | ||||
| Badu-Apraku, B., Oyekunle, M., Akinwale, R. O., & Lum, A. F. (2011a). Combining ability of early‐maturing white maize inbreds under stress and nonstress environments. Agronomy journal, 103(2), 544-557. https://doi.org/10.2134/agronj2010.0345 |
||||
| Badu‐Apraku, B., Akinwale, R. O., Ajala, S. O., Menkir, A., Fakorede, M. A. B., & Oyekunle, M. (2011b). Relationships among traits of tropical early maize cultivars in contrasting environments. Agronomy journal, 103(3), 717-729. https://doi.org/10.2134/agronj2010.0484 |
||||
| Bakari, H., Djomdi, Ruben, Z. F., Roger, D. D., Cedric, D., Guillaume, P., & Gwendoline, C. (2023). Sorghum (Sorghum bicolor L. Moench) and its main parts (by-products) as promising sustainable sources of value-added ingredients. Waste and Biomass Valorization, 14(4), 1023-1044. https://doi.org/10.1007/s12649-022-01992-7 |
||||
| Bello, D., Kadams, A. M., Simon, S. Y., & Mashi, D. S. (2007). Studies on genetic variability in cultivated sorghum (Sorghum bicolor L. Moench) cultivars of Adamawa State Nigeria. American-Eurasian Journal of Agricultural and Environmental Science, 2(3), 297-302. | ||||
| Bollam, S., Romana, K. K., Rayaprolu, L., Vemula, A., Das, R. R., Rathore, A., Gandham, P., Chander, G., Deshpande, S. P., & Gupta, R. (2021). Nitrogen use efficiency in Sorghum: exploring native variability for traits under variable N-Regimes. Frontiers in Plant Science, 12, 643192. https://doi.org/10.3389/fpls.2021.643192 |
||||
| Bremner, R. J. M. and Mulvaney, C. S. (1982). Nitrogen-Total. In Page, A. L. (ed.). Methods of soil analysis, Part 2: Chemical and microbiological properties, 2nd edition (pp. 595-624). American Society of Agronomy & Soil Science Society of America. https://doi.org/10.2134/agronmonogr9.2.2ed.c31 |
||||
| Buah, S. S. J., & Mwinkaara, S. (2009). Response of sorghum to nitrogen fertilizer and plant density in the Guinea savanna zone. Journal of Agronomy, 8(4), 124-130. https://doi.org/10.3923/ja.2009.124.130 |
||||
| Chauhan, S., Mishra, U., & Singh, A. K. (2020). Genetic variability, heritability and genetic advance studies for yield and yield related traits in pearl millet [Pennisetum glaucum (L.) R. Br.]. Journal of Pharmacognosy and Phytochemistry, 9(3), 1199-1202. | ||||
| Cheema, M. A., Farhad, W., Saleem, M. F., Khan, H. Z., Munir, A., Wahid, M. A., Rasul, F., Hammad, H. M., Cheema, M., & Farhad, W. (2010). Nitrogen management strategies for sustainable maize production. Crop and Environment, 1(1), 49-52. | ||||
| Chen, B., Liu, E., Tian, Q., Yan, C., & Zhang, Y. (2014). Soil nitrogen dynamics and crop residues. A review. Agronomy for Sustainable Development, 34(2), 429-442. https://doi.org/10.1007/s13593-014-0207-8 |
||||
| Ciampitti, I. A., Prasad, P. V., Kumar, S. R., Kubsad, V. S., Adam, M., Eyre, J. X., ... & Gambin, B. (2021). Sorghum management systems and production technology around the globe. In Sorghum in the 21st century: Food-fodder-feed-fuel for a rapidly changing world (pp. 251-293). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-15-8249-3_11 |
||||
| Dalton, T. J., & Hodjo, M. (2021). Trends in global production, consumption, and utilization of Sorghum. In Sorghum in the 21st Century: Food-Fodder-Feed-Fuel for a Rapidly Changing World (pp. 3-15). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-15-8249-3_1 |
||||
| Darko, Y. A., & Mensah, A. O. T. (2024). Community health concerns: assessing nitrogen in Ghanaian drinking water sources. Ayden International Journal of Environmental Sciences and Allied Research, 1(1), 47-54. | ||||
| Dembele, J. S. B., Gano, B., Vaksmann, M., Kouressy, M., Dembele, L. L., Doumbia, M., Teme, N., Diouf, D., & Audebert, A. (2020). Response of eight sorghum varieties to plant density and nitrogen fertilization in the Sudano-Sahelian zone in Mali. African Journal of Agricultural Research, 16(10), 1401-1410. https://doi.org/10.5897/AJAR2020.15025 |
||||
| Des Marais, D. L., Hernandez, K. M., & Juenger, T. E. (2013). Genotype-by-environment interaction and plasticity: exploring genomic responses of plants to the abiotic environment. Annual Review of Ecology, Evolution, and Systematics, 44(1), 5-29. https://doi.org/10.1146/annurev-ecolsys-110512-135806 |
||||
| FAO (2017): Food and Agriculture Organization of the United Nations, Land Resources. FAOSTATS-Crops. http://faostat.fao.org/site/567/default.aspx#ancor. | ||||
| Fasahat, P., Rajabi, A., Rad, J. M., & Derera, J. (2016). Principles and utilization of combining ability in plant breeding. Biometrics & Biostatistics International Journal, 4(1), 00085. https://doi.org/10.15406/bbij.2016.04.00085 |
||||
| Hartley, H. O. (1950). The maximum F-ratio as a short-cut test for heterogeneity of variance. Biometrika, 37(3/4), 308-312. https://doi.org/10.2307/2332383 |
||||
| Hossain, M. S., Islam, M. N., Rahman, M. M., Mostofa, M. G., & Khan, M. A. R. (2022). Sorghum: A prospective crop for climatic vulnerability, food and nutritional security. Journal of Agriculture and Food Research, 8, 100300. https://doi.org/10.1016/j.jafr.2022.100300 |
||||
| Kaur, P., Singh, S. K., Kaur, R., & Sidhu, M. K. (2020). Response of different levels of nitrogen and spacing on growth and yield of cauliflower grown under central region of Punjab. International Journal of Bio-resource and Stress Management, 11(4), 320-326. https://doi.org/10.23910/1.2020.2110 |
||||
| Kimani, J. M., Tongoona, P., Derera, J., & Nyende, A. B. (2011). Upland rice varieties development through participatory plant breeding. ARPN Journal of Agricultural and Biological Science, 6(9), 39-49. | ||||
| Leiser, W. L., Rattunde, H. F. W., Piepho, H. P., Weltzien, E., Diallo, A., Melchinger, A. E., & Haussmann, B. I. (2012). Selection strategy for sorghum targeting phosphorus‐limited environments in West Africa: Analysis of multi‐environment experiments. Crop Science, 52(6), 2517-2527. https://doi.org/10.2135/cropsci2012.02.0139 |
||||
| Ngidi, A., Shimelis, H., Abady, S., Chaplot, V., & Figlan, S. (2024). Genetic variation and association of yield, yield components, and carbon storage in sorghum (Sorghum bicolor [L.] Moench) genotypes. BMC Genomic Data, 25(1), 74. https://doi.org/10.1186/s12863-024-01256-4 |
||||
| Pasley, H., Nichols, V., Castellano, M., Baum, M., Kladivko, E., Helmers, M., & Archontoulis, S. (2021). Rotating maize reduces the risk and rate of nitrate leaching. Environmental Research Letters, 16(6), 064063. https://doi.org/10.1088/1748-9326/abef8f |
||||
| Rooney, W. L., Blumenthal, J., Bean, B., & Mullet, J. E. (2007). Designing sorghum as a dedicated bioenergy feedstock. Biofuels, Bioproducts and Biorefining, 1(2), 147-157. https://doi.org/10.1002/bbb.15 |
||||
| Serba, D. D., Yadav, R. S., Varshney, R. K., Gupta, S. K., Mahalingam, G., Srivastava, R. K., Gupta, R., Perumal, R., & Tesso, T. T. (2020). Genomic designing of pearl millet: A resilient crop for arid and semi-arid environments. In Genomic designing of climate-smart cereal crops (pp. 221-286). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-93381-8_6 |
||||
| Singh, R. K., & Chaudhary, B. D. (1985). Biometrical methods in quantitative genetic analysis. New Delhi: Kalyani Publishers. | ||||
| Sivasubramaniam, S., & Madhava Menon, P. (1973). Genotypic and phenotypic variability in rice. Madras Agricultural Journal, 60(9/12), 1093-1096. | ||||
| Teressa, T., Semahegn, Z., & Bejiga, T. (2021). Multi environments and genetic-environmental interaction (GxE) in plant breeding and its challenges: a review article. International Journal of Research Studies in Agricultural Sciences, 7(4), 11-18. https://doi.org/10.20431/2454-6224.0704002 |
||||
| Yeshiwas, Y. (2017). Effect of different rate of nitrogen fertilizer on the growth and yield of cabbage (Brassica oleraceae) at Debre Markos, North West Ethiopia. African Journal of Plant Science, 11(7), 276-281. https://doi.org/10.5897/AJPS2015.1330 |
||||