ADVANCED JOURNAL OF CHEMISTRY RESEARCH
Integrity Research Journals

Model: Open Access/Peer Reviewed
DOI: 10.31248/AJCR
Start Year: 2022
Email: ajcr@integrityresjournals.org


Determination of pharmaceutical residues in sediment using solid phase extraction and high performance liquid chromatographic technique

https://doi.org/10.31248/AJCR2023.003   |   Article Number: 1A261FE52   |   Vol.1 (1) - April 2023

Received Date: 02 March 2023   |   Accepted Date: 12 April 2023  |   Published Date: 30 April 2023

Authors:  Nnodum, Chima F.* , Majolagbe, O. Abdulrafiu , Yusuf, Kafeelah A. , Olajide, Mustapha , Atobajaye, Abdulhafeez O. and Akinola, Taiwo R.

Keywords: pollution., sediment, Badagry creek, Cartridges, high performance liquid chromatography, Mile-2 River, Oke-afa canal, pharmaceutical residues

Pharmaceutical residues (PRs) are emerging contaminants reaching the aquatic environment through treated and untreated wastewater from several sources. Pharmaceutical residues can remain in the dissolved phase or be adsorbed on the sediment. This study focused on the occurrence, characterization, and quantification of PRs in the sediment of Oke-afa canal in Isolo, which joins Amuwo-Odofin through Mile-2 River and Badagry Creek of Lagos, Nigeria. Surface sediments were collected bi-monthly for twenty-four months from five locations using grab method into polyethylene bags. They were air-dried, pulverized, and sieved with a 2 mm sieve. Ten pharmaceutical compounds (Ibuprofen, Diclofenac, Acetaminophen, Amoxicillin, Metronidazole, Sulfadoxine, Ofloxacin, Ciprofloxacin, Pyrimethamine, and Caffeine) were extracted from the sediments with 2% NH4OH in (MeOH), followed by extraction with 2% formic acid in MeOH and then MeOH only. The resulting extracts were subjected to solid phase extraction on OASIS HLB cartridges, C18 with a mobile phase consisting of 10 mM ammonium acetate and MeOH (pH=4.8) and then High-Performance Liquid Chromatographic analysis. The results showed that caffeine and pyrimethamine had maximum concentrations of 3.25±2.0 ng/g and 1.50±0.9 ng/g respectively. Ofloxacin, amoxicillin and ibuprofen had concentrations 0.70±0.3, 0.33±0.1 and 0.04±0.1 ng/g respectively. Diclofenac, acetaminophen and pyrimethamine were detected in 60% of the samples analysed. The order of concentrations of PRs in the sediment was Caff > Pyrim > Oflo > Amox > Aceta > Sulf > Metro > Diclo > Ibu. The correlation was observed between PRs. Continuous monitoring of these contaminants in the environment ensures the safety of man and the environment.

Al-Khazrajy, O. S., & Boxall, A. B. (2016). Risk-based prioritization of pharmaceuticals in the natural environment in Iraq. Environmental Science and Pollution Research, 23, 15712-15726.
Crossref
 
Álvarez-Esmorís, C., Conde-Cid, M., Fernández-Calviño, D., Fernández-Sanjurjo, M. J., Núñez-Delgado, A., Álvarez-Rodríguez, E., & Arias-Estévez, M. (2020). Adsorption-desorption of doxycycline in agricultural soils: batch and stirred-flow-chamber experiments. Environmental Research, 186, Article number 109565.
Crossref
 
An, Y., Hong, S., Yoon, S. J., Cha, J., Shin, K. H., & Khim, J. S. (2020). Current contamination status of traditional and emerging persistent toxic substances in the sediments of Ulsan Bay, South Korea. Marine Pollution Bulletin, 160, Article number 111560.
Crossref
 
Aznar, R., Albero, B., Sánchez-Brunete, C., Miguel, E., Martín-Girela, I., & Tadeo, J. L. (2017). Simultaneous determination of multiclass emerging contaminants in aquatic plants by ultrasound-assisted matrix solid-phase dispersion and GC- MS. Environmental Science and Pollution Research, 24, 7911-7920.
Crossref
 
Azzouz, A., & Ballesteros, E. (2012). Combined microwave-assisted extraction and continuous solid-phase extraction prior to gas chromatography-mass spectrometry determination of pharmaceuticals, personal care products and hormones in soils, sediments and sludge. Science of the Total Environment, 419, 208-215.
Crossref
 
Benotti, M. J., & Brownawell, B. J. (2007). Distributions of pharmaceuticals in an urban estuary during both dry-and wet-weather conditions. Environmental Science & Technology, 41(16), 5795-5802
Crossref
 
Benotti, M. J., & Brownawell, B. J. (2009). Microbial degradation of pharmaceuticals in estuarine and coastal seawater. Environmental Pollution, 157(3), 994-1002.
Crossref
 
Blackwell, P. A., Lützhøft, H. C. H., Ma, H. P., Halling-Sørensen, B., Boxall, A. B., & Kay, P. (2004). Ultrasonic extraction of veterinary antibiotics from soils and pig slurry with SPE clean-up and LC-UV and fluorescence detection. Talanta, 64(4), 1058-1064.
Crossref
 
Bossio, J. P., Harry, J., & Kinney, C. A. (2008). Application of ultrasonic assisted extraction of chemically diverse organic compounds from soils and sediments. Chemosphere, 70(5), 858-864.
Crossref
 
Buerge, I. J., Poiger, T., Müller, M. D., & Buser, H. R. (2003). Caffeine, an anthropogenic marker for wastewater contamination of surface waters. Environmental science & technology, 37(4), 691-700.
Crossref
 
Caliman, F. A., & Gavrilescu, M. (2009). Pharmaceuticals, personal care products and endocrine disrupting agents in the environment-a review. CLEAN-Soil, Air, Water, 37(4‐5), 277-303.
Crossref
 
Carvalho, P. N., Pirra, A., Basto, M. C. P., & Almeida, C. M. R. (2013). Multi-family methodologies for the analysis of veterinary pharmaceutical compounds in sediment and sludge samples: comparison among extraction techniques. Analytical Methods, 5(22), 6503-6510.
Crossref
 
Chaves, M. D. J. S., Barbosa, S. C., de Melo Malinowski, M., Volpato, D., Castro, Í. B., dos Santos Franco, T. C. R., & Primel, E. G. (2020). Pharmaceuticals and personal care products in a Brazilian wetland of international importance: Occurrence and environmental risk assessment. Science of the Total Environment, 734, Article number 139374.
Crossref
 
Chen, C. E., Zhang, H., Ying, G. G., Zhou, L. J., & Jones, K. C. (2015). Passive sampling: a cost-effective method for understanding antibiotic fate, behaviour and impact. Environment International, 85, 284-291.
Crossref
 
Chen, K. L., Liu, L. C., & Chen, W. R. (2017). Adsorption of sulfamethoxazole and sulfapyridine antibiotics in high organic content soils. Environmental Pollution, 231, 1163-1171.
Crossref
 
Chen, X. Y., Zhang, K., Chao, L. J., Liu, Z. Y., Du, Y. H., & Xu, Q. (2021). Quantifying natural recharge characteristics of shallow aquifers in groundwater overexploitation zone of North China. Water Science and Engineering, 14(3), 184-192.
Crossref
 
Chiaia-Hernández, A. C., Casado-Martinez, C., Lara-Martin, P., & Bucheli, T. D. (2022). Sediments: sink, archive, and source of contaminants. Environmental science and Pollution Research, 29, 85761-85765.
Crossref
 
Da Silva, D. C., & Oliveira, C. C. (2018). Development of micellar HPLC-UV method for determination of pharmaceuticals in water samples. Journal of Analytical Methods in Chemistry, Volume 2018, Article ID 9143730, 12 pages.
Crossref
 
Dai, G., Wang, B., Huang, J., Dong, R., Deng, S., & Yu, G. (2015). Occurrence and source apportionment of pharmaceuticals and personal care products in the Beiyun River of Beijing, China. Chemosphere, 119, 1033-1039.
Crossref
 
Darwano, H., Duy, S. V., & Sauvé, S. (2014). A new protocol for the analysis of pharmaceuticals, pesticides, and hormones in sediments and suspended particulate matter from rivers and municipal wastewaters. Archives of Environmental Contamination and Toxicology, 66, 582-593.
Crossref
 
Dave, G., & Herger, G. (2012). Determination of detoxification to Daphnia magna of four pharmaceuticals and seven surfactants by activated sludge. Chemosphere, 88(4), 459-466.
Crossref
 
De Lange, H. J., Noordoven, W., Murk, A. J., Lürling, M. F. L. L. W., & Peeters, E. T. H. M. (2006). Behavioural responses of Gammarus pulex (Crustacea, Amphipoda) to low concentrations of pharmaceuticals. Aquatic Toxicology, 78(3), 209-216.
Crossref
 
Dinh, Q. T., Alliot, F., Moreau-Guigon, E., Eurin, J., Chevreuil, M., & Labadie, P. (2011). Measurement of trace levels of antibiotics in river water using on-line enrichment and triple-quadrupole LC-MS/MS. Talanta, 85(3), 1238-1245.
Crossref
 
Duan, Y. P., Meng, X. Z., Wen, Z. H., Ke, R. H., & Chen, L. (2013). Multi-phase partitioning, ecological risk and fate of acidic pharmaceuticals in a wastewater receiving river: The role of colloids. Science of the Total Environment, 447, 267-273.
Crossref
 
Environmental Protection Agency (EPA) (2007). Method 1694: Pharmaceuticals and personal care products in water, soil, sediment and biosolids by HPLC/MS/MS. December 2007.
 
Felis, E., Kalka, J., Sochacki, A., Kowalska, K., Bajkacz, S., Harnisz, M., & Korzeniewska, E. (2020). Antimicrobial pharmaceuticals in the aquatic environment-occurrence and environmental implications. European Journal of Pharmacology, 866, Article number 172813.
Crossref
 
Figueroa-Diva, R. A., Vasudevan, D., & MacKay, A. A. (2010). Trends in soil sorption coefficients within common antimicrobial families. Chemosphere, 79(8), 786-793.
Crossref
 
Finizio, A., & Vighi, M. (2014). Predicted no effect concentration (PNEC). Encyclopedia of toxicology: Third Edition. Elsevier.
Crossref
 
Fonseca, E., Hernández, F., Ibáñez, M., Rico, A., Pitarch, E., & Bijlsma, L. (2020). Occurrence and ecological risks of pharmaceuticals in a Mediterranean river in Eastern Spain. Environment International, 144, Article number 106004.
Crossref
 
Gómez, M. J., Bueno, M. M., Lacorte, S., Fernández-Alba, A. R., & Agüera, A. (2007). Pilot survey monitoring pharmaceuticals and related compounds in a sewage treatment plant located on the Mediterranean coast. Chemosphere, 66(6), 993-1002.
Crossref
 
Haap, T., Triebskorn, R., & Köhler, H. R. (2008). Acute effects of diclofenac and DMSO to Daphnia magna: immobilisation and hsp70-induction. Chemosphere, 73(3), 353-359.
Crossref
 
Henschel, K. P., Wenzel, A., Diedrich, M., & Fliedner, A. (1997). Environmental hazard assessment of pharmaceuticals. Regulatory Toxicology and Pharmacology, 25(3), 220-225.
Crossref
 
Hoeger, B., Köllner, B., Dietrich, D. R., & Hitzfeld, B. (2005). Water-borne diclofenac affects kidney and gill integrity and selected immune parameters in brown trout (Salmo trutta f.fario). Aquatic Toxicology, 75(1), 53-64.
Crossref
 
Hörsing, M., Ledin, A., Grabic, R., Fick, J., Tysklind, M., la Cour Jansen, J., & Andersen, H. R. (2011). Determination of sorption of seventy-five pharmaceuticals in sewage sludge. Water research, 45(15), 4470-4482.
Crossref
 
Jiang, Y., Li, M., Guo, C., An, D., Xu, J., Zhang, Y., & Xi, B. (2014). Distribution and ecological risk of antibiotics in a typical effluent-receiving river (Wangyang River) in north China. Chemosphere, 112, 267-274.
Crossref
 
Kim, Y., Choi, K., Jung, J., Park, S., Kim, P. G., & Park, J. (2007). Aquatic toxicity of acetaminophen, carbamazepine, cimetidine, diltiazem and six major sulfonamides, and their potential ecological risks in Korea. Environment international, 33(3), 370-375.
Crossref
 
Klement, A., Kodešová, R., Bauerová, M., Golovko, O., Kočárek, M., Fér, M., Koba, O., Nikodem, A., & Grabic, R. (2018). Sorption of citalopram, irbesartan and fexofenadine in soils: Estimation of sorption coefficients from soil properties. Chemosphere, 195, 615-623.
Crossref
 
Lawrence, J. R., Swerhone, G. D., Topp, E., Korber, D. R., Neu, T. R., & Wassenaar, L. I. (2007). Structural and functional responses of river biofilm communities to the nonsteroidal anti‐inflammatory diclofenac. Environmental Toxicology and Chemistry: An International Journal, 26(4), 573-582.
Crossref
 
Laws, B. V., Dickenson, E. R., Johnson, T. A., Snyder, S. A., & Drewes, J. E. (2011). Attenuation of contaminants of emerging concern during surface-spreading aquifer recharge. Science of the Total Environment, 409(6), 1087-1094.
Crossref
 
Li, Y., Zhang, L., Liu, X., & Ding, J. (2019). Ranking and prioritizing pharmaceuticals in the aquatic environment of China. Science of the Total Environment, 658, 333-342.
Crossref
 
Lin, K., & Gan, J. (2011). Sorption and degradation of wastewater-associated non-steroidal anti-inflammatory drugs and antibiotics in soils. Chemosphere, 83(3), 240-246.
Crossref
 
Lorphensri, O., Sabatini, D. A., Kibbey, T. C., Osathaphan, K., & Saiwan, C. (2007). Sorption and transport of acetaminophen, 17α-ethynyl estradiol, nalidixic acid with low organic content aquifer sand. Water Research, 41(10), 2180-2188.
Crossref
 
Lu, X., Wang, L., Li, L. Y., Lei, K., Huang, L., & Kang, D. (2010). Multivariate statistical analysis of heavy metals in street dust of Baoji, NW China. Journal of hazardous materials, 173(1-3), 744-749.
Crossref
 
Madikizela, L. M., Ncube, S., & Chimuka, L. (2020). Analysis, occurrence and removal of pharmaceuticals in African water resources: A current status. Journal of environmental management, 253, 109741.
Crossref
 
Martín, J., Santos, J. L., Aparicio, I., & Alonso, E. (2010). Multi‐residue method for the analysis of pharmaceutical compounds in sewage sludge, compost and sediments by sonication‐assisted extraction and LC determination. Journal of Separation Science, 33(12), 1760-1766.
Crossref
 
Minten, J., Adolfsson-Erici, M., & Alsberg, T. (2011). Extraction and analysis of pharmaceuticals in polluted sediment using liquid chromatography mass spectrometry. International Journal of Environmental Analytical Chemistry, 91(6), 553-566.
Crossref
 
Molnar, E., Maasz, G., & Pirger, Z. (2021). Environmental risk assessment of pharmaceuticals at a seasonal holiday destination in the largest freshwater shallow lake in Central Europe. Environmental Science and Pollution Research, 28, 59233-59243.
Crossref
 
Ngo, T. H., Van, D. A., Tran, H. L., Nakada, N., Tanaka, H., & Huynh, T. H. (2021). Occurrence of pharmaceutical and personal care products in Cau River, Vietnam. Environmental Science and Pollution Research, 28, 12082-12091.
Crossref
 
Nnodum, C.F., & Yusuf, K.A. (2022). Ecological risk assessment of pharmaceutical residues in surface water. International Journal of Scientific Research and Management, 10(5), 56-62.
Crossref
 
Park, J. Y., & Huwe, B. (2016). Effect of pH and soil structure on transport of sulfonamide antibiotics in agricultural soils. Environmental Pollution, 213, 561-570.
Crossref
 
Pomati, F., Netting, A. G., Calamari, D., & Neilan, B. A. (2004). Effects of erythromycin, tetracycline and ibuprofen on the growth of Synechocystis sp. and Lemna minor. Aquatic Toxicology, 67(4), 387-396.
Crossref
 
Savci, S. (2013). A review of occurrence of pharmaceuticals in sediments. African Journal of Biotechnology, 12(29), 4539-4541.
Crossref
 
Tamura, I., Kimura, K., Kameda, Y., Nakada, N., & Yamamoto, H. (2013). Ecological risk assessment of urban creek sediments contaminated by untreated domestic wastewater: potential contribution of antimicrobials and a musk fragrance. Environmental Technology, 34(12), 1567-1575.
Crossref
 
Varga, M., Dobor, J., Helenkár, A., Jurecska, L., Yao, J., & Záray, G. (2010). Investigation of acidic pharmaceuticals in river water and sediment by microwave-assisted extraction and gas chromatography-mass spectrometry. Microchemical Journal, 95(2), 353-358.
Crossref
 
Vazquez-Roig, P., Andreu, V., Blasco, C., & Picó, Y. (2012). Risk assessment on the presence of pharmaceuticals in sediments, soils and waters of the Pego-Oliva Marshlands (Valencia, eastern Spain). Science of the Total Environment, 440, 24-32.
Crossref
 
Wise, R. (2002). Antimicrobial resistance: priorities for action. Journal of Antimicrobial Chemotherapy, 49(4), 585-586.
Crossref
 
World Health Organization (WHO) (‎2015)‎. Antibiotic resistance: Multi-country public awareness survey. World Health Organization. Retrieved from https://apps.who.int/iris/handle/10665/194460
 
Wu, J., Li, J., Teng, Y., Chen, H., & Wang, Y. (2020). A partition computing-based positive matrix factorization (PC-PMF) approach for the source apportionment of agricultural soil heavy metal contents and associated health risks. Journal of Hazardous Materials, 388, Article number 121766.
Crossref
 
Yang, L., Wang, T., Zhou, Y., Shi, B., Bi, R., & Meng, J. (2021). Contamination, source and potential risks of pharmaceuticals and personal products (PPCPs) in Baiyangdian Basin, an intensive human intervention area, China. Science of The Total Environment, 760, Article number 144080.
Crossref
 
Yang, Y. Y., Toor, G. S., & Williams, C. F. (2015). Pharmaceuticals and organochlorine pesticides in sediments of an urban river in Florida, USA. Journal of Soils and Sediments, 15, 993-1004.
Crossref
 
Zeng, X., Liu, Y., You, S., Zeng, G., Tan, X., Hu, X., Hu, X., Huang, L., & Li, F. (2015). Spatial distribution, health risk assessment and statistical source identification of the trace elements in surface water from the Xiangjiang River, China. Environmental Science and Pollution Research, 22, 9400-9412.
Crossref
 
Zhang, S., Lu, Y. X., Zhang, J. J., Liu, S., Song, H. L., & Yang, X. L. (2020). Constructed wetland revealed efficient sulfamethoxazole removal but enhanced the spread of antibiotic resistance genes. Molecules, 25(4), Article number 834.
Crossref
 
Zhou, L. J., Ying, G. G., Zhao, J. L., Yang, J. F., Wang, L., Yang, B., & Liu, S. (2011). Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in northern China. Environmental Pollution, 159(7), 1877-1885.
Crossref
 
Zuloaga, O., Navarro, P., Bizkarguenaga, E., Iparraguirre, A., Vallejo, A., Olivares, M., & Prieto, A. (2012). Overview of extraction, clean-up and detection techniques for the determination of organic pollutants in sewage sludge: a review. Analytica Chimica Acta, 736, 7-29.
Crossref