ISSN: 2992-4928
Model: Open Access/Peer Reviewed
DOI: 10.31248/AJPB
Start Year: 2019
Email: ajpb@integrityresjournals.org
https://doi.org/10.31248/AJPB2022.021 | Article Number: E88F88391 | Vol.3 (2) - June 2022
Received Date: 08 May 2022 | Accepted Date: 14 June 2022 | Published Date: 30 June 2022
Authors: Victoria Wilson* and Abdou Tenkouano
Keywords: Diploids, embryo culture, Musa spp, phenology, progeny.
This study was conducted to determine the extent of heterosis and heterobeltiosis in phenological and vegetative traits in Musa diploid by diploid crosses. The experimental design was RCB with two replications of 6 plants per genotype. Planting was done in alleys of multispecies hedgerows in an area of 2,880 m2 at a spacing of 3 m x 2 m. The study was conducted at the International Institute of Tropical Agriculture (IITA) High Rainfall Station, Onne, Rivers State, Nigeria for 3 years. Six female diploid banana and plantain clones (maternal/ seed parents) were crossed with a single diploid male plantain accession, TMP2x 2829-62 (paternal/pollen parent). The resulting diploid F1 embryos were cultured in vitro for 6 weeks and their seedlings along with the parental clones, vegetatively propagated from the parents of each genotype, were planted in the field. Data collected included days to flowering, time to fruit filling, plant height, plant girth, and height of next tallest sucker. Data subjected to ANOVA in RCB was tested at 5% level of significance. Heterosis (Ht) and heterobeltiosis (Hbt) were estimated. The degree of heterosis and heterobeltiosis differed for different traits, different crosses and genotype. Overall, 66.7% of the progenies showed heterosis and heterobeltiosis for days to flowering and time to fruit filling; 66.7% exhibited heterosis and 50% heterobeltiosis for plant height; 33% heterosis and heterobeltiosis for plant girth and 16.7% heterosis and heterobeltiosis for height of next tallest sucker. Correlations between the levels of heterosis for different traits between the progeny and the female parents were generally weak except for time to fruit filling (r = 0.816) which showed a significant correlation. Heterosis and heterobeltiosis occur in phenological and vegetative traits in diploid x diploid crosses indicating their importance in further possibilities for breeding.
Asmussen, M. A., Arnold, J., & Avise, J. C. (1989). The effects of assortative mating and migration on cytonuclear associations in hybrid zones. Genetics, 122(4), 923-934. Crossref |
||||
Auger, D. L., Peters, E. M., & Birchler, J. A. (2005). A genetic test Auger, D. L., Peters, E. M., & Birchler, J. A. (2005). A genetic test of bioactive gibberellins as regulators of heterosis in maize. Journal of Heredity, 96(5), 614-617. Crossref |
||||
Bakry, F., Carreel, F., Jenny, C., & Horry, J. P. (2009). Genetic improvement of banana. In: Jain, S. M., & Priyadarshan, P. M. (eds.). Breeding Plantation tree crops: Tropical species. CIRAD, Unite de Recherche, Montpellier cedex 5 - France. Springer Science+Business Media, LLC. | ||||
Bansal, P., Banga, S., & Banga, S. S. (2012). Heterosis as investigated in terms of polyploidy and genetic diversity using designed Brassica juncea amphiploid and its progenitor diploid species. PLoS One, 7(2), e29607. Crossref |
||||
Batte, M. (2019). Increasing efficiency of the breeding pipeline for East African highland bananas. Ph.D. Thesis. Swedish University of Agricultural Sciences. Alnarp, Sweden. | ||||
Batte, M., Nyine, M., Uwimana, B., Swennen, R., Akech, V., Brown, A., Hovmalm, H. P., Geleta, M., & Ortiz, R. (2020). Significant progressive heterobeltiosis in banana crossbreeding. BMC Plant Biology, 20, Article number 489. Crossref |
||||
Beavis, W. D., Pollak, E., & Frey, K. J. (1987). A theoretical model for quantitatively inherited traits influenced by nuclear-cytoplasmic interactions. Theoretical and Applied Genetics, 74(5), 571-578. Crossref |
||||
Brown, A., Tumuhimbise, R., Amah, D., Uwimana, B., Nyine, M., Mduma, H., Talengera, D., Karamura, D., Kuriba, J., & Swennen, R. (2017). Bananas and plantains (Musa spp). In: Campos, H., & Caligari, P. D. S. (eds.). Genetic improvement of tropical crops. Springer International Publishing. Crossref |
||||
Bruce, A. B. (1910). The Mendelian theory of heredity and augmentation of vigour. Science 32, 627-628. Crossref |
||||
Cardoso, D. L., Luz, L. N. D., Macêdo, C. M. P. D., Gonçalves, L. S. A., & Pereira, M. G. (2014). Heterosis in papaya: inter and intragroup analysis. Revista Brasileira de Fruticultura, 36(3), 610-619. Crossref |
||||
Cauthen, J., Jones, D., Gugerty, M. K., & Anderson, C. L. (2013). Banana and plantain value chain: West Africa. EPAR Brief No. 239. Evans School of Public Affairs, University of Washington. Pp. 1-25 | ||||
Cheng, S. H., Zhuang, J. Y., Fan, Y. Y., Du, J. H., & Cao, L. Y. (2007). Progress in research and development on hybrid rice: a super-domesticate in China. Annals of Botany, 100(5), 959-966. Crossref |
||||
Coors, J. G., & Pandey, S. (1999). Genetics and exploitation of heterosis in crops. Crop Science Society of America, Madison, WI. Crossref |
||||
Crow, J. F. (1948). Alternative hypotheses of hybrid vigor. Genetics, 33, 477-487. Crossref |
||||
Duvick, D. N. (1999). Heterosis: Feeding people and protecting natural resources. In: Coors, J. G., & Pandey, S. (eds.). Genetics and exploitation of heterosis in crops. Madison, WI: American Society of Agronomy and Crop Science Society of America. Pp. 19-29. Crossref |
||||
Duvick, D. N. (2001). Biotechnology in the 1930s: the development of hybrid maize. Nature Reviews Genetics, 2(1), 69-74. Crossref |
||||
East, E. M. (1908). Inbreeding in corn. Report of the Connecticut Agricultural Experiment Station. Pp. 419-428. | ||||
Fiévet, J. B., Nidelet, T., Dillmann, C., & De Vienne, D. (2018). Heterosis is a systemic property emerging from non-linear genotype-phenotype relationships: evidence from in vitro genetics and computer simulations. Frontiers in Genetics, 9, Article number 159. Crossref |
||||
Flint-Garcia, S. A., Buckler, E. S., Tiffin, P., Ersoz, E., & Springer, N. M. (2009). Heterosis is prevalent for multiple traits in diverse maize germplasm. PloS one, 4(10), e7433. Crossref |
||||
Fu, D., Xiao, M., Hayward, A., Fu, Y., Liu, G., Jiang, G., & Zhang, H. (2014). Utilization of crop heterosis: a review. Euphytica, 197(2), 161-173. Crossref |
||||
Fujimoto, R., Uezono, K., Ishikura, S., Osabe, K., Peacock, W. J., & Dennis, E. S. (2018). Recent research on the mechanism of heterosis is important for crop and vegetable breeding systems. Breeding Science, 68, 145-158. Crossref |
||||
Garcia, A. A., Wang, S., Melchinger, A. E., & Zeng, Z. B. (2008). Quantitative trait loci mapping and the genetic basis of heterosis in maize and rice. Genetics, 180(3), 1707-1724. Crossref |
||||
Goldman, I. L. (1998). From out of old fields comes all this new corn: An historical perspective on heterosis in crop improvement. In: Lamkey, K. R., &. Staub, J. E. (eds.). Concepts and breeding of heterosis in crop plants. Crop Science Society of America, Madison, WI. Pp. 1-13. Crossref |
||||
Groszmann, M., Gonzalez-Bayon, R., Greaves, I. K., Wang, L., Huen, A. K., Peacock, W. J., & Dennis, E. S. (2014). Intraspecific Arabidopsis hybrids show different patterns of heterosis despite the close relatedness of the parental genomes. Plant Physiology, 166(1), 265-280. Crossref |
||||
Groszmann, M., Greaves, I. K., Fujimoto, R., Peacock, W. J., & Dennis, E. S. (2013). The role of epigenetics in hybrid vigour. Trends in Genetics, 29(12), 684-690. Crossref |
||||
Hale, A. L., Farnham, M. W., Nzaramba, M. N., & Kimbeng, C. A. (2007). Heterosis for horticultural traits in broccoli. Theoretical and Applied Genetics, 115(3), 351-360. Crossref |
||||
Hallauer, A. R., Carena, M. J., & Miranda-Filho, J. B. (2010). Quantitative genetics in maize breeding. Springer, New York, NY, USA. Crossref |
||||
Hoecker, N., Keller, B., Piepho, H. P., & Hochholdinger, F. (2006). Manifestation of heterosis during early maize (Zea mays L.) root development. Theoretical and Applied Genetics, 112(3), 421-429. Crossref |
||||
Hull, F. H. (1945). Recurrent selection for specific combining ability in corn 1. Agronomy journal, 37(2), 134-145. Crossref |
||||
Jiang, Y., Schmidt, R. H., Zhao, Y., & Reif, J. C. (2017). A quantitative genetic framework highlights the role of epistatic effects for grain-yield heterosis in bread wheat. Nature Genetics, 49(12), 1741-1746. Crossref |
||||
Jones, D. F. (1917). Dominance of linked factors as a means of accounting for heterosis. Proceedings of the National Academy of Sciences, 3(4), 310-312. Crossref |
||||
Kabiita, A. I. (2014). Characterizing an F2 banana diploid population for identifying and validating molecular Markers for weevil resistance. Ph.D. Thesis Makerere University, Uganda | ||||
Kanfany, G., Fofana, A., Tongoona, P., Danquah, A., Offei, S., Danquah, E., & Cisse, N. (2018). Estimates of combining ability and heterosis for yield and its related traits in pearl millet inbred lines under downy mildew prevalent areas of Senegal. International Journal of Agronomy, Volume 2018, Article ID 3439090, 12 pages. Crossref |
||||
Kaushik, P., Plazas, M., Prohens, J., Vilanova, S., & Gramazio, P. (2018). Diallel genetic analysis for multiple traits in eggplant and assessment of genetic distances for predicting hybrids performance. Plos One, 13(6), e0199943. Crossref |
||||
Kawamura, K., Kawanabe, T., Shimizu, M., Nagano, A. J., Saeki, N., Okazaki, K., Kaji, M., Dennis, E. S., Osabe, K., & Fujimoto, R. (2016). Genetic distance of inbred lines of Chinese cabbage and its relationship to heterosis. Plant Gene, 5, 1-7. Crossref |
||||
Lariepe, A., Mangin, B., Jasson, S., Combes, V., Dumas, F., Jamin, P., Lariagon, C., Jolivot, D., Madur, D., Fievet, J., Gallais, A., Dubreuil, P., Charcosset, A., & Moreau, L. (2012). The genetic basis of heterosis: multiparental quantitative trait loci mapping reveals contrasted levels of apparent overdominance among traits of agronomical interest in maize (Zea mays L.). Genetics, 190(2), 795-811. Crossref |
||||
Lariepe, A., Moreau, L., Laborde, J., Bauland, C., Mezmouk, S., Décousset, L., Mary-Huard, T., Fiévet, J.B., Gallais, A., Dubreuil, P., & Charcosset, A. (2017). General and specific combining abilities in a maize (Zea mays L.) test-cross hybrid panel: relative importance of population structure and genetic divergence between parents. Theoretical and Applied Genetics, 130(2), 403-417. Crossref |
||||
Lauss, K., Wardenaar, R., Oka, R., van Hulten, M. H., Guryev, V., Keurentjes, J. J., Stam, M. & Johannes, F. (2018). Parental DNA methylation states are associated with heterosis in epigenetic hybrids. Plant Physiology, 176(2), 1627-1645. Crossref |
||||
Li, C., Zhao, T., Yu, H., Li, C., Deng, X., Dong, Y., Zhang, F., Zhang, Y., Mei, L., Chen, J., & Zhu, S. (2018). Genetic basis of heterosis for yield and yield components explored by QTL mapping across four genetic populations in upland cotton. BMC genomics, 19(1), 1-16. Crossref |
||||
Li, L., Lu, K., Chen, Z., Mu, T., Hu, Z., & Li, X. (2008). Dominance, overdominance and epistasis condition the heterosis in two heterotic rice hybrids. Genetics, 180(3), 1725-1742. Crossref |
||||
Liang, Q., Shang, L., Wang, Y., & Hua, J. (2015). Partial dominance, overdominance and epistasis as the genetic basis of heterosis in upland cotton (Gossypium hirsutum L.). PLoS One, 10(11), e0143548. Crossref |
||||
McDaniel, R. G., & Sarkissian, I. V. (1968). Mitochondrial heterosis in maize. Genetics, 59(4), 465-475. Crossref |
||||
Melchinger, A. E., Piepho, H. P., Utz, H. F., Muminovic, J., Wegenast, T., TOrjek, O. T. T. O., Altmann, T., & Kusterer, B. (2007). Genetic basis of heterosis for growth-related traits in Arabidopsis investigated by testcross progenies of near-isogenic lines reveals a significant role of epistasis. Genetics, 177(3), 1827-1837. Crossref |
||||
Ortiz, R. (1995). Plot techniques for assessment of bunch weight in banana trials under two systems of crop management. Agronomy Journal, 87(1), 63-69. Crossref |
||||
Ortiz, R., & Vuylsteke, D. (1995). Factors influencing seed set in triploid Musa spp. L. and production of euploid hybrids. Annals of Botany, 75(2), 151-155. Crossref |
||||
Ortiz, R., Austin, P. D., & Vuylsteke, D. (1997). IITA high rainfall station: Twenty years of research for sustainable agriculture in the West African Humid Forest. American Journal of Horticultural Science, 32(6), 969-972. Crossref |
||||
Powers, L. (1944). An expansion of Jones's theory for the explanation of heterosis. The American Naturalist, 78(776), 275-280. Crossref |
||||
Rahul, S. R. (2017). Combining ability and heterosis for morpho-physiological characters on bread wheat (Triticum aestivum L.). Agricultural Research and Technology, 13(1), 555868. Crossref |
||||
Reif, J., Hallauer, A., & Melchinger, A. (2005). Heterosis and heterotic patterns in maize. Maydica, 50(3), 215-223. | ||||
Riddle, N. C., & Birchler, J. A. (2008). Comparative analysis of inbred and hybrid maize at the diploid and tetraploid levels. Theoretical and Applied Genetics, 116(4), 563-576. Crossref |
||||
Schnable, P. S., & Springer, N. M. (2013). Progress toward understanding heterosis in crop plants. Annual Review of Plant Biology, 64, 71-88. Crossref |
||||
Semel, Y., Nissenbaum, J., Menda, N., Zinder, M., Krieger, U., Issman, N., Pleban, T., Lippman, Z., Gur, A., & Zamir, D. (2006). Overdominant quantitative trait loci for yield and fitness in tomato. Proceedings of the National Academy of Sciences, 103(35), 12981-12986. Crossref |
||||
Shang, L., Liang, Q., Wang, Y., Zhao, Y., Wang, K., & Hua, J. (2016). Epistasis together with partial dominance, over-dominance and QTL by environment interactions contribute to yield heterosis in upland cotton. Theoretical and Applied Genetics. 129(7), 1429-1446. Crossref |
||||
Shull, G. H. (1908). The composition of a field of maize. Journal of Heredity, 4(1), 296-301. Crossref |
||||
Soehendi, R., & Srinives, P. (2005). Significance of heterosis and heterobeltiosis in an f1 hybrid of mungbean (Vigna radiata (L.) Wilczek) for hybrid seed production. SABRAO Journal of Breeding and Genetics. 37(2) 97-105. | ||||
Song, R., & Messing, J. (2003). Gene expression of a gene family in maize based on noncollinear haplotypes. Proceedings of the National Academy of Sciences, 100(15), 9055-9060. Crossref |
||||
Springer, N. M., & Stupar, R. M. (2007). Allelic variation and heterosis in maize: how do two halves make more than a whole? Genome Research, 17(3), 264-275. Crossref |
||||
Srivastava, H. K. (1981). Intergenomic interaction, heterosis, and improvement of crop yield. Advances in agronomy, 34, 117-195. Crossref |
||||
Stuber, C. W., Lincoln, S. E., Wolff, D. W., Helentjaris, T., & Lander, E. (1992). Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics, 132(3), 823-839. Crossref |
||||
Su, J., Zhang, F., Yang, X., Feng, Y., Yang, X., Wu, Y., Guan, Z., Fang, W., & Chen, F. (2017). Combining ability, heterosis, genetic distance and their intercorrelations for waterlogging tolerance traits in chrysanthemum. Euphytica, 213, 213, Article number 42. Crossref |
||||
Swennen, R., Vuylsteke, D., & Ortiz, R. (1995). Phenotypic diversity and patterns of variation in West and Central African plantains (Musa spp., AAB group Musaceae). Economic Botany, 49(3), 320-327. Crossref |
||||
Tenkouano, A., Crouch, J. H., Crouch, H. K., & Ortiz, R. (1998). Genetic diversity, hybrid performance, and combining ability for yield in Musa germplasm. Euphytica, 102(3), 281-288. Crossref |
||||
Tenkouano, A., Lamien, N., Agogbua, J., Amah, D., Swennen, R., Traorﬞe, S., Thiemele, D., Aby, N., Kobenan, K., Gnonhouri, G., Yao, N., Astin, G., Sawadogo-Kabore, S., Tarpaga, V., Issa, W., Lokossou, B., Adjanohoun, A., Amadji, G.L., Adangnitode, S., Igue, K. A. D., & Ortiz, R. (2019). Promising High-Yielding Tetraploid Plantain-Bred Hybrids in West Africa. International Journal of Agronomy, Volume 2019, Article ID 3873198, 8 pages. Crossref |
||||
Tenkouano, A., Oselebe, H. O., & Ortiz, R. (2010). Selection Efficiency in'Musa L.'under Different Cropping Systems. Australian Journal of Crop Science, 4(2), 74-80. | ||||
Tomkowiak, A., Bocianowski, J., Radzikowska, D., & Kowalczewski, P. Ł. (2019). Selection of parental material to maximize heterosis using SNP and SilicoDarT markers in maize. Plants, 8(9), 349. Crossref |
||||
Tushemereirwe, W., Batte, M., Nyine, M., Tumuhimbise, R., Barekye, A., Tendo, S., Talengera, D., Kubiriba, J., Lorenzen, J., Swennen, R., & Uwimana, B. (2015). Performance of NARITA banana hybrids in the preliminary yield trial for three cycles in Uganda. NARITA Report 2. Pp. 1 -37. A NARO and IITA publication. | ||||
Valizadeh, N., Arslan, N., & Khawar, K. M. (2017). Heterosis and heterobeltiosis studies on yield and yield components of some Turkish poppy hybrids (Papaver somniferum L.). Journal of Applied Research on Medicinal and Aromatic Plants, 6, 41-51. Crossref |
||||
Virmani, S. S., Pandey, M. P., Singh, I. S., & Xu, W. J. (2004). Classical and molecular concepts of heterosis. In: Jain, H. K. & Kharkwal, M. C. (eds.). Plant Breeding (pp. 407-418). Springer, Dordrecht. Crossref |
||||
Virmani, S. S., Viraktamath, B. C., Casal, C. L., Toledo, R. S., Lopez, M. T., & Manalo, J. O. (1997). Hybrid rice breeding manual. International Rice Research Institute, Laguna, Philippines. | ||||
Williams, W. (1959). Heterosis and the genetics of complex characters. Nature, 184(4685), 527-530. Crossref |
||||
Wilson, V., & Tenkouano, A. (1998). Heterotic responses of first and second generation plantain (Musa spp., AAB group)-derived hybrids. MusAfrica 12: 17. | ||||
Wilson, V., & Tenkouano, A. (2019a). Flowering and Seed Set In a 4x-2x Musa Polycross Mating Scheme. International Journal of Research and Innovation in Applied Science, 4(11), 124-132. | ||||
Wilson, V., & Tenkouano, A. (2019b). The efficiency and effectiveness of open pollination in Musa breeding. Asian Journal of Biochemistry, Genetics and Molecular Biology, 2(4), 1-15. Crossref |
||||
Wilson, V., Tenkouano, A., Pasberg-Gauhl, C., & Gauhl, F. (1999). Heterotic responses of tetraploid and triploid plantain hybrids in Southeast Nigeria. African Crop Science, 7(2), 117-123. | ||||
Wilson, V., Tenkouano, A., Wilson, G. F., Swennen, R., Vuylsteke, D., Ortiz, R., Crouch, J.H., Crouch, H.K., Gauhl, F., Pasberg-Gauhl, C. & Austin, P. D. (2020). Ten year progression of Musa breeding from 1987 to 1997: 1. Pollination success and seed production (Fecundity) patterns among multiple ploidy crosses. Asian Journal of Research in Botany, 4(4), 53-67. | ||||
Wolko, J., Dobrzycka, A., Bocianowski, J., Bartkowiak-Broda, I. (2019). Estimation of heterosis for yield-related traits for single cross and three-way cross hybrids of oilseed rape (Brassica napus L.). Euphytica, 215, Article number 156. Crossref |
||||
Yu, Y., Zhu, M., Cui, Y., Liu, Y., Li, Z., Jiang, N., Xu, Z., Xu, Q., & Sui, G. (2020). Genome Sequence and QTL Analyses Using Backcross Recombinant Inbred Lines (BILs) and BILF1 Lines Uncover Multiple Heterosis-related Loci. International Journal of Molecular Sciences. 21, 780-780. Crossref |
||||
Zhai, R., Feng, Y., Wang, H., Zhan, X., Shen, X., Wu, W., Zhang, Y., Chen, D., Dai, G., Yang, Z., Cao, L., & Cheng, S. (2013). Transcriptome analysis of rice root heterosis by RNA-Seq. BMC Genomics, 14, Article number 19. Crossref |
||||
Zhen, G., Qin, P., Liu, K. Y., Nie, D. Y., Yang, Y. Z., Deng, X. W., & He, H. (2017). Genome-wide dissection of heterosis for yield traits in two-line hybrid rice populations. Scientific Reports, 7, Article number 7635. Crossref |