ISSN: 2992-4928
Model: Open Access/Peer Reviewed
DOI: 10.31248/AJPB
Start Year: 2019
Email: ajpb@integrityresjournals.org
https://doi.org/10.31248/AJPB2025.048 | Article Number: 7D9DC1E21 | Vol.6 (4) - December 2025
Received Date: 26 October 2025 | Accepted Date: 23 December 2025 | Published Date: 30 December 2025
Authors: Mali Bulama Gubio and Mohammad Saquib*
Keywords: Nigeria., Drought stress, net primary productivity, physiological adaptation, relative water content, Vachellia, Senegalia, dryland forestry
Water stress is a major constraint on plant productivity in semi-arid regions of Sub-Saharan Africa. This study examined the physiological responses and productivity of three leguminous species, Vachellia tortilis, Vachellia nilotica, and Senegalia senegal, under differential watering regimes in the semi-arid zone of Maiduguri, Nigeria. Seedlings were subjected to four treatments: M0 (control; watered four times per week), M1 (slight moisture stress), M2 (moderate stress), and M3 (severe stress). Relative water content (RWC), plant water deficit (PWD), chlorophyll pigments, total dry matter accumulation (TDM), and net primary productivity (NPP) were measured at 60, 90, and 120 days. Results showed that V. tortilis and S. senegal maintained high RWC and exhibited adaptive increases in NPP under moderate stress, while V. nilotica produced the highest biomass under optimal moisture but experienced significant reductions in NPP and pigment content under severe drought. Chlorophyll stability improved under moderate stress in V. nilotica and V. tortilis, whereas S. senegal was more sensitive to severe moisture deficits. Correlation analysis revealed strong negative relationships between NPP and watering regimes, particularly in V. nilotica. The study highlights species-specific drought responses: V. tortilis and S. senegal demonstrated greater physiological plasticity under moderate water stress, whereas V. nilotica was more productive under favourable conditions but less tolerant to prolonged drought. These findings support the suitability of V. tortilis and S. senegal for dryland afforestation and ecological restoration, and emphasise the usefulness of NPP as a quantitative indicator for selecting drought-resilient species under climate variability in West African drylands.
| Adebayo, A. A. (1997). Climate and rainfall variability in Borno State, Nigeria. Annals of Borno, 13, 21-32. | ||||
| Ati, O. F., Stigter, C. J., & Oladipo, E. O. (2002). A comparison of methods to determine the onset of the growing season in northern Nigeria. International Journal of Climatology: A Journal of the Royal Meteorological Society, 22(6), 731-742. https://doi.org/10.1002/joc.712 |
||||
| Bouaziz, A., & Bruckler, L. (1989). Modeling of wheat imbibition and germination as influenced by soil physical properties. Soil Science Society of America Journal, 53(1), 219-227. https://doi.org/10.2136/sssaj1989.03615995005300010039x |
||||
| Cory, S. T., Smith, W. K., & Anderson, T. M. (2022). First‐year Acacia seedlings are anisohydric "water‐spenders" but differ in their rates of water use. American Journal of Botany, 109(8), 1251-1261. https://doi.org/10.1002/ajb2.16032 |
||||
| Dhopte, A. M., & Manuel, L. M. (2002). Principles and techniques for plant physiological biochemical experiments. Kalyani Publishers, New Delhi. | ||||
| Diatta, O., Sarr, M. S., Hansen, J. K., Diallo, A. M., Nielsen, L. R., Ræbild, A., & Kjær, E. D. (2021). Survival and growth of Acacia senegal (L.) Wild.(Senegalia senegal (L.) Britton) provenances depend on the rainfall at the site of origin. Annals of Forest Science, 78(4), 82. https://doi.org/10.1007/s13595-021-01098-5 |
||||
| Fazeli-Nasab, B., Vessal, S., Bagheri, A., & Malekzadeh-Shafaroudi, S. (2025). Evaluation of drought-tolerant chickpea genotypes (Cicer arietinum L.) using morphophysiological and phytochemical traits. Frontiers in Plant Science, 16, 1529177. https://doi.org/10.3389/fpls.2025.1529177 |
||||
| Food and Agriculture Organization of the United Nations (FAO). (2020). Global forest resources assessment 2020: Main report. Rome, Italy: FAO. Retrieved from https://doi.org/10.4060/ ca9825en. | ||||
| Gomez, K. A., & Gomez, A. A. (1984). Statistical Procedures for Agricultural Research (2nd ed.). John Wiley & Sons, New York. | ||||
| Gubio, M. B., & Saquib, M. (2025). Influence of differential watering regimes on root traits and productivity of Vachellia tortilis, Vachellia nilotica, and Senegalia senegal in the semi-arid zone of Maiduguri, Borno State, Nigeria. Advanced Journal of Plant Biology, 6(2), 44-56. https://doi.org/10.31248/AJPB2025.044 |
||||
| Haile, M., Livingstone, J., & Shibeshi, A. (2020). Inception review under the Working Landscapes Programme. Pastoral and Environmental Network in the Horn of Africa (PENHA), Addis Ababa, Ethiopia. | ||||
| IPCC (2022). Climate Change 2022: Impacts, Adaptation, and Vulnerability. Cambridge University Press, Cambridge, UK, and New York, NY, USA. Retrieved from https://www.ipcc.ch/report/ar6/wg2/ | ||||
| Jackson, M. L. (1973). Soil Chemical Analysis. Prentice Hall of India Pvt. Ltd., New Delhi. | ||||
| Jia, L., He, Y., Liu, W., Li, Y., & Zhang, Y. (2023). Drought did not change the linear relationship between chlorophyll fluorescence and terrestrial gross primary production under universal biomes. Frontiers in Forests and Global Change, 6, 1157340. https://doi.org/10.3389/ffgc.2023.1157340 |
||||
| Kenneth (2025). Facts About Borno State Population in 2025. NaijaDetails. Retrieved from https://naijadetails.com/borno-state-population. | ||||
| Kramer, P. J., & Boyer, J. S. (1995). Water relations of plants and soils. Academic Press, San Diego, CA, USA. ISBN 978-0-12-425060-4 | ||||
| Kyalangalilwa, B., Boatwright, J. S., Daru, B. H., Maurin, O., & van der Bank, M. (2013). Phylogenetic position and revised classification of Acacia sl (Fabaceae: Mimosoideae) in Africa, including new combinations in Vachellia and Senegalia. Botanical Journal of the Linnean Society, 172(4), 500-523. https://doi.org/10.1111/boj.12047 |
||||
| Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids; Pigments of photosynthetic biomembranes. Methods in Enzymology, 148, 350-382 https://doi.org/10.1016/0076-6879(87)48036-1 |
||||
| Luo, M., Meng, F., Sa, C., Bao, Y., Liu, T., & De Maeyer, P. (2024). Detecting drought-related temporal effects on global net primary productivity. Remote Sensing, 16(20), 3787. https://doi.org/10.3390/rs16203787 |
||||
| Mahmood, T., Khalid, S., Abdullah, M., Ahmed, Z., Shah, M. K. N., Ghafoor, A., & Du, X. (2019). Insights into drought stress signaling in plants and the molecular genetic basis of cotton drought tolerance. Cells, 9, 105. https://doi.org/10.3390/cells9010105 |
||||
| Nigerian Meteorological Agency (NIMET) (2022). Climate Review Bulletin for Borno State. Nigerian Meteorological Agency, Abuja, Nigeria. | ||||
| Poorter, H., Niklas, K. J., Reich, P. B., Oleksyn, J., Poot, P., & Mommer, L. (2012). Biomass allocation to leaves, stems and roots: meta‐analyses of interspecific variation and environmental control. New Phytologist, 193(1), 30-50. https://doi.org/10.1111/j.1469-8137.2011.03952.x |
||||
| Qiao, M., Hong, C., Jiao, Y., Hou, S., & Gao, H. (2024). Impacts of drought on photosynthesis in major food crops and the related mechanisms of plant responses to drought. Plants, 13(13), 1808. https://doi.org/10.3390/plants13131808 |
||||
| Raw Materials Research and Development Council (RMRDC) (2004). Standard Industrial Profile on Gum Arabic. RMRDC Publication, Abuja, Nigeria. | ||||
| Raza, A., Mubarik, M. S., Sharif, R., Habib, M., Jabeen, W., Zhang, C., Chen, H., Chen, Z.H., Siddique, K.H., Zhuang, W., & Varshney, R. K. (2023). Developing drought‐smart, ready‐to‐grow future crops. The Plant Genome, 16(1), e20279. https://doi.org/10.1002/tpg2.20279 |
||||
| Sarr, M. S., Seiler, J. R., & Sullivan, J. (2024). Effect of drought stress on the physiology and early growth of seven Senegalia (Acacia) Senegal (L.) Britton provenances. New Forests, 55(5), 1145-1158. https://doi.org/10.1007/s11056-023-10027-5 |
||||
| Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Abdul-Wajid, H. H., & Battaglia, M. L. (2021). Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants, 10(2), 259. https://doi.org/10.3390/plants10020259 |
||||
| Shah, T. M., Imran, M., Atta, B. M., Ashraf, M. Y., Hameed, A., Waqar, I., Shafiq, M., Hussain, K., Naveed, M., Aslam, M., & Maqbool, M. A. (2020). Selection and screening of drought tolerant high yielding chickpea genotypes based on physio-biochemical indices and multi-environmental yield trials. BMC Plant Biology, 20(1), 171. https://doi.org/10.1186/s12870-020-02381-9 |
||||
| Uni, D., Sheffer, E., Klein, T., Shem-Tov, R., Segev, N., & Winters, G. (2023). Responses of two Acacia species to drought suggest different water-use strategies, reflecting their topographic distribution. Frontiers in Plant Science, 14, 1154223. https://doi.org/10.3389/fpls.2023.1154223 |
||||
| Wahab, A., Abdi, G., Saleem, M. H., Ali, B., Ullah, S., Shah, W., Mumtaz, S., Yasin, G., Muresan, C. C., & Marc, R. A. (2022). Plants' physio-biochemical and phyto-hormonal responses to alleviate the adverse effects of drought stress: A comprehensive review. Plants, 11(13), 1620. https://doi.org/10.3390/plants11131620 |
||||
| Wuest, S. (2007). Vapour is the principal source of water imbibed by seeds in unsaturated soils. Seed Science Research, 17(1), 3-9. https://doi.org/10.1017/S0960258507383165 |
||||
| Yan, W., Lu, Y., Guo, L., Liu, Y., Li, M., Zhang, B., ... & Huo, J. (2024). Effects of drought stress on photosynthesis and chlorophyll fluorescence in blue honeysuckle. Plants, 13(15), 2115. https://doi.org/10.3390/plants13152115 |
||||
| Zeleke, G., Dejene, T., Tadesse, W., & Martín-Pinto, P. (2021). Gum arabic production and population status of Senegalia senegal (L.) Britton in dryland forests in South Omo Zone, Ethiopia. Sustainability, 13(21), 11671. https://doi.org/10.3390/su132111671 |
||||