ISSN: 2756-6684
Model: Open Access/Peer Reviewed
DOI: 10.31248/AJPS
Start Year: 2018
Email: ajps@integrityresjournals.org
https://doi.org/10.31248/AJPS2025.125 | Article Number: 0DBF5CBE2 | Vol.6 (4) - August 2025
Received Date: 24 May 2025 | Accepted Date: 27 July 2025 | Published Date: 30 August 2025
Authors: Jibrin Suleiman Yaro* , Jamilu Ari Labaran , Abdullahi Lawal , Abdullahi Ibrahim Ode , Iwa Samiya James and Adamu Saidu
Keywords: rice husk, Bismutite, Radiation shielding parameters, optical, TGA, X-ray radiation.
Common shielding materials against highly penetrating radiations like X-rays and gamma photons are concrete and aggregates made of lead. On the other hand, concrete ages and turns opaque, and lead is costly and chemically dangerous. These and other factors have fuelled the ongoing quest for substitute radiation shielding materials. Mineral ores containing Rice Husk and bismuth ore have been generated by small-scale mining in Nigeria. Analysis of the ore found that 85.20% of the bismutite (Bi2O2CO3) and Rice Husk constituted 97.25% of silica. The new glass series was made from silica derived from Rice Husk and bismutite as dopants to alter the desired properties of the glass, with the empirical chemical formula [(SiO2)20(H2BO3)55(Na2CO3)25]100-x(Bismutite)x, where . The glass series was created via the melt quenching process. Measurements of Physical, optical characteristics, X-ray attenuation, and thermal analysis of the glass systems were used to characterise the new glass. The glass system has refractive index values of 2.35-2.46. The produced glass was thermally stable. All glass samples were subjected to the X-Ray attenuation experiment of radiation shielding parameters, specifically the linear attenuation coefficient (LAC), mass attenuation coefficient (MAC), half value layer (HVL), and tenth value layer (TVL), at photon energies ranging from 40 to 80 kVp. The results indicate that the LAC and MAC of the glass samples decrease and increase as the photon energies increase from 40 to 80kVp, while TVL and HVL increase and decrease as the photon energy increases (tube voltage).
| Abbas. B. (2023). Thermogravimetric analysis (TGA). Definitive Guide. Pp. 214-223. | ||||
| Abdul Aziz, S. H., El-Mallawany, R., Badaron, S. S., Kamari, H. M., & Amin Matori, K. (2015). Optical properties of erbium zinc tellurite glass system. Advances in Materials Science and Engineering, 2015(1), 628954. https://doi.org/10.1155/2015/628954 |
||||
| Acevedo-Del-Castillo, A., Águila-Toledo, E., Maldonado-Magnere, S., & Aguilar-Bolados, H. (2021). A brief review on the high-energy electromagnetic radiation-shielding materials based on polymer nanocomposites. International Journal of Molecular Sciences, 22(16), 9079. https://doi.org/10.3390/ijms22169079 |
||||
| Alam, S., & Chowdhury, M. A. (2021). Thermal gravimetric analysis of glass fiber reinforced composite for understanding the impact of copper oxide in relation to titanium oxide filler particles. Composites Theory and Practice, 21(1-2), 12-21. | ||||
| Al-Buriahi, M. S., Rashad, M., Alalawi, A., & Sayyed, M. I. (2020). Effect of Bi2O3 on mechanical features and radiation shielding properties of boro-tellurite glass system. Ceramics International, 46(10), 16452-16458. https://doi.org/10.1016/j.ceramint.2020.03.208 |
||||
| Baptista Neto, A. T., & Faria, L. O. (2014). Construction and Calibration of a multipurpose instrument to simultaneously measure dose, voltage and half-valuelayer in X-ray emission equipment. Radiation Measurements, 71, 178-182. https://doi.org/10.1016/j.radmeas.2014.05.029 |
||||
| Deepty, M., Srinivas, C., Kumar, E. R., Mohan, N. K., Prajapat, C. L., Rao, T. V. C., Meena, S. S., Verma, A. K., & Sastry, D. L. (2019). XRD, EDX, FTIR and ESR Spectroscopic Studies of Co-precipitated Mn-substituted Zn-ferrite nanoparticles. Ceramics International, 45(6), 8037-8044. https://doi.org/10.1016/j.ceramint.2019.01.029 |
||||
| Eevon, C., Halimah, M. K., Zakaria, A., Azurahanim, C. A. C., Azlan, M. N., & Faznny, M. F. (2016). Linear and nonlinear optical properties of Gd 3 + doped zinc borotellurite glasses for all-optical switching applications. Results in Physics, 6, 761-766. https://doi.org/10.1016/j.rinp.2016.10.010 |
||||
| Elmahroug, Y., Almatari, M., Dong, M., & Tekin, H. O. (2018). Investigation of radiation shielding properties for Bi2O3 - V2O5 - TeO2 glass system using MCNP5 code. Journal of Non-Crystalline Solids, 499, 32-40. https://doi.org/10.1016/j.jnoncrysol.2018.07.008 |
||||
| Elsafi, M., EL-Nahal, M. A., Sayyed, M. I., Saleh, I. H., & Abbas, M. I. (2021). Effect of bulk and nanoparticles Bi2O3 on attenuation capability of radiation shielding glass. Ceramics International, 47(14), 19651-19658. https://doi.org/10.1016/j.ceramint.2021.03.302 |
||||
| Gaikwad, D. K., Obaid, S. S., Sayyed, M. I., Bhosale, R. R., Awasarmol, V. V., Kumar, A., Shirsat, M. D., & Pawar, P. P. (2018). Comparative study of gamma ray shielding competence of WO3-TeO2-PbO glass system to different glasses and concretes. Materials Chemistry and Physics, 213, 508-517. https://doi.org/10.1016/j.matchemphys.2018.04.019 |
||||
| IAEA (2019). Postgraduate Education Course in Radiation Protection and Safety of Radiation Sources: Standard Syllabus. Training Course Series, 18, 12-14. | ||||
| Kaewjaeng, S., Boonyu, K., Kim, H. J., Kaewkhao, J., & Kothan, S. (2020, October). Study on radiation shielding properties of glass samples doped with holmium. In AIP Conference Proceedings (Vol. 2279, No. 1, p. 060005). AIP Publishing LLC. https://doi.org/10.1063/5.0022961 |
||||
| Kara, U., Kavaz, E., Issa, S. A., Rashad, M., Susoy, G., Mostafa, A. M. A., Yildiz Yorgun, N., & Tekin, H. O. (2020). Optical, structural and nuclear radiation shielding properties of Li2B4O7 glasses: effect of boron mineral additive. Applied Physics A, 126(4), 261. https://doi.org/10.1007/s00339-020-3446-3 |
||||
| Kolanoski, H., & Wermes, N. (2020). Introduction. In: Particle Detectors: Fundamentals and Applications. Oxford University Press. https://doi.org/10.1093/oso/9780198858362.001.0001 |
||||
| Kurudirek, M. (2017). Heavy Metal Borate Glasses: Potential use for Radiation Shielding. Journal of Alloys and Compounds, 727, 1227-1236. https://doi.org/10.1016/j.jallcom.2017.08.237 |
||||
| Manohara, S. R., Hanagodimath, S. M., & Gerward, L. (2009). Photon interaction and energy absorption in glass: A transparent gamma ray shield. Journal of Nuclear Materials, 393(3), 465-472. https://doi.org/10.1016/j.jnucmat.2009.07.001 |
||||
| Mostafa, A. M. A., Zakaly, H. M. H., Pyshkina, M., Issa, S. A. M., Tekin, H. O., Sidek, H. A. A., Matori, K. A., & Zaid, M. H. M. (2020). Multi-objective optimization strategies for radiation shielding performance of BZBB glasses using Bi2O3: A FLUKA Monte Carlo code calculations. Journal of Materials Research and Technology, 9(6), 12335-12345. https://doi.org/10.1016/j.jmrt.2020.08.077 |
||||
| Naseer, K. A., Marimuthu, K., Mahmoud, K. A., & Sayyed, M. I. (2021). Impact of Bi2O3 modifier concentration on barium-zincborate glasses: physical, structural, elastic, and radiation-shielding properties. European Physical Journal Plus, 136, 116. https://doi.org/10.1140/epjp/s13360-020-01056-6 |
||||
| Obaid, S. S., Gaikwad, D. K., & Pawar, P. P. (2018). Determination of gamma ray shielding parameters of rocks and concrete. Radiation Physics and Chemistry, 144, 356-360. https://doi.org/10.1016/j.radphyschem.2017.09.022 |
||||
| Paz, E. C., Dias, J. D. M., Melo, G. H. A., Lodi, T. A., Carvalho, J. O., Façanha Filho, P. F., Barboza, M. J., Pedrochi, F., & Steimacher, A. (2016). Physical, thermal and structural properties of calcium borotellurite glass system. Materials Chemistry and Physics, 178, 133-138. https://doi.org/10.1016/j.matchemphys.2016.04.080 |
||||
| Peng, S., Yang, F., Wu, L., Qi, Y., Zheng, S., Yin, D., Wang, X. & Zhou, Y. (2014). Multicolor upconversion emission and energy transfer mechanism in Er3+/Tm3+/Yb3+ codoped tellurite glasses. Journal of Quantitative Spectroscopy and Radiative Transfer, 147, 155-63. https://doi.org/10.1016/j.jqsrt.2014.05.028 |
||||
| Rammah, Y. S., EL-Agawany, F. I., Gamal, A., Olarinoye, I. O., Ahmed, E. M., & Abuohaswa, A. S. (2021). Responsibility of Bi2O3 content in photon, alpha, proton, fast and thermal neutron shielding capacity and elastic moduli of zinc/B2O3/Bi2O3 glasses. Journal of Inorganic and Organometallic Polymers and Materials, 31(8), 3505-3524. https://doi.org/10.1007/s10904-021-01976-5 |
||||
| Saad Aliyu, U., Mohamed Kamari, H., Muhammad Hamza, A., & Abdulla Awshah, A. (2018). The Structural, Physical and Optical Properties of Borotellurite Glasses Incorporated with Silica from Rice Husk. Journal of Science and Mathematics Letters, 6, 32-46. https://doi.org/10.37134/jsml.vol6.4.2018 |
||||
| Sarachai, S., Chanthima, N., Sangwaranatee, N. W., Kothan, S., Kaewjaeng, S., Tungjai, M., Djamal, M., & Kaewkhao, J. (2018). Radiation shielding properties of BaO-ZnO-B2O3 glass for X-ray room. Key Engineering Materials, 766, 88-93. https://doi.org/10.4028/www.scientific.net/KEM.766.88 |
||||
| Sekimoto, M., & Katoh, Y. (2015). Coloring characteristic of lead glass for X-ray irradiation. New Journal of Glass and Ceramics, 5(3), 25-30. https://doi.org/10.4236/njgc.2015.53004 |
||||
| Singh, S., Kumar, A., Singh, D., Thind, K. S., & Mudahar, G. S. (2008). Barium-borate-flyash glasses: as radiation shielding materials. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 266(1), 140-146. https://doi.org/10.1016/j.nimb.2007.10.018 |
||||
| Soltan, A. S., Abu-Sehly, A. A. Joraid, A. A and. Alamri, S. N. (2013). The activation energy and fragility index of the glass transition in Se76Te21Sb3 chalcogenide glass. Thermochimica Acta, 574, 73-78. https://doi.org/10.1016/j.tca.2013.09.020 |
||||
| Suparta, G. B., Louk, A. C., Sam, N. H., & Wiguna, G. A. (2014, June). Quality performance of customized and low cost x-ray micro-digital radiography system. In International Conference on Experimental Mechanics 2013 and Twelfth Asian Conference on Experimental Mechanics (Vol. 9234, pp. 239-245). SPIE. https://doi.org/10.1117/12.2055592 |
||||
| Thomas, G. A., & Symonds, P. (2016). Radiation exposure and health effects - Is it time to reassess the real consequences? Clinical Oncology, 28(4), pp.231-236. https://doi.org/10.1016/j.clon.2016.01.007 |
||||