ISSN: 2536-7080
Model: Open Access/Peer Reviewed
DOI: 10.31248/RJFSN
Start Year: 2016
Email: rjfsn@integrityresjournals.org
https://doi.org/10.31248/RJFSN2023.164 | Article Number: 798CF6FF4 | Vol.9 (1) - February 2024
Received Date: 17 November 2023 | Accepted Date: 10 January 2024 | Published Date: 28 February 2024
Authors: Mofoluwaso Olufunmilola Ojo* , Bashir Adeiza Zubair , Yemmy Mitchel Maxwell , Fortune Abidemi Femi , Fatai Oluwatoyin Alabi , Khadijat Salihu Muhammad , Jerome Adekunle Ayo and Magdalene Ude
Keywords: functional properties, fermentation, Cassava starch, annealing, chemical properties
This study reports the effect of annealing on chemical and physico-functional properties of fermented pro-vitamin A cassava starch of cassava roots TME-IBA 070539 variety. The provitamin cassava starch flour was extracted to produce native starch flours (NCS). Fermentation was carried out on the tubers at 24 and 48 hours to produce provitamin A cassava fermented starches FCS24 and FCS48 respectively. The starch flour samples NCS, FCS24 and FCS48 were then annealed at 50°C to produce annealed native starches (ANCS), annealed 24 hours fermented cassava starch (AFCS24) and annealed 48 hours fermented cassava starch (AFCS48). The chemical and physico-functional properties were evaluated using standard methods. The result revealed negligible amount of crude protein and ash content. However, the carbohydrate content in all the samples ranged between 93.39 – 95.01% signifying high purity starches. These processes imparted positively the β- carotene content which ranged between 2.50 – 2.80 µg/100g in the cassava starches. Although, no significant (p>0.05) difference was observed in the β-carotene content when compared with the corresponding annealed starches except for a slight reduction at AFCS48. The amylose content decreased significantly (p>0.05) by 21.72 and 38% in the combined process of annealing and fermentation as observed for AFCS24 and AFCS48 respectively. Also, amylose leaching was more pronounced in the NCS than the fermented and annealed starches. No significantly (p<0.05) difference was observed in the corresponding samples; ANCS, AFCS24 and AFCS48 for total titratable acidity while pH decreased significantly in the annealed starches. The swelling and solubility increased with increase in temperature, generally annealing lowered the swelling capacity and increased the solubility of the starch samples and this could be harnessed in food preparations and in the industries.
Adebowale, K. O., & Lawal, O. S. (2002). Effect of annealing and heat moisture conditioning on the physicochemical characteristics of Bambarra groundnut (Voandzeia subterranea) starch. Food/Nahrung, 46(5), 311-316. https://doi.org/10.1002/1521-3803(20020901)46:5<311::AID-FOOD311>3.0.CO;2-Z |
||||
Adebowale, K. O., Olu-Owolabi, B. I., Olayinka, O. O., & Lawal, O. S. (2005). Effect of heat moisture treatment and annealing on physicochemical properties of red sorghum starch. African Journal of Biotechnology, 4(9), 928-933. | ||||
Alexander Essers, A. J. (1994, March). Making safe flour from bitter cassava by indigenous solid substrate fermentation. In International Workshop on Cassava Safety 375 (pp. 217-224). https://doi.org/10.17660/ActaHortic.1994.375.20 |
||||
Alvani, K., Qi, X., & Tester, R. F. (2012). Gelatinisation properties of native and annealed potato starches. Starch‐Stärke, 64(4), 297-303. https://doi.org/10.1002/star.201100130 |
||||
AOAC (2012). Official methods of analysis, Association of official analytical chemist 19th edition, Washington D.C., USA. | ||||
Atwijukire, E., Hawumba, J. F., Baguma, Y., Wembabazi, E., Esuma, W., Kawuki, R. S., & Nuwamanya, E. (2019). Starch quality traits of improved provitamin A cassava (Manihot esculenta Crantz). Heliyon, 5(2), e01215. https://doi.org/10.1016/j.heliyon.2019.e01215 |
||||
Ayetigbo, O., Latif, S., Abass, A., & Müller, J. (2018). Comparing characteristics of root, flour and starch of biofortified yellow-flesh and white-flesh cassava variants, and sustainability considerations: A review. Sustainability, 10(9), 3089. https://doi.org/10.3390/su10093089 |
||||
Boakye Peprah, B., Parkes, E. Y., Harrison, O. A., van Biljon, A., Steiner-Asiedu, M., & Labuschagne, M. T. (2020). Proximate composition, cyanide content, and carotenoid retention after boiling of provitamin A-rich cassava grown in Ghana. Foods, 9(12), 1800. https://doi.org/10.3390/foods9121800 |
||||
Burešová, B., Paznocht, L., Jarošová, V., Doskočil, I., & Martinek, P. (2023). The effect of boiling and in vitro digestion on the carotenoid content of colored-grain wheat. Journal of Food Composition and Analysis, 115, 105002. https://doi.org/10.1016/j.jfca.2022.105002 |
||||
Chen, R., Williams, P. A., Shu, J., Luo, S., Chen, J., & Liu, C. (2022). Pectin adsorption onto and penetration into starch granules and the effect on the gelatinization process and rheological properties. Food Hydrocolloids, 129, 107618. https://doi.org/10.1016/j.foodhyd.2022.107618 |
||||
Das, J. K., Salam, R. A., Kumar, R., & Bhutta, Z. A. (2013). Micronutrient fortification of food and its impact on woman and child health: a systematic review. Systematic Reviews, 2, Article number 67 https://doi.org/10.1186/2046-4053-2-67 |
||||
Demiray, E., & Tulek, Y. (2015). Color degradation kinetics of carrot (Daucus carota L.) slices during hot air drying. Journal of Food Processing and Preservation, 39(6), 800-805 https://doi.org/10.1111/jfpp.12290 |
||||
Desta, D. T., Kelikay, G. N., Zekwos, M., Eshete, M., Reda, H. H., Alemayehu, F. R., & Zula, A. T. (2021). Influence of fermentation time on proximate composition and microbial loads of Enset, (Ensete ventricosum), sampled from two different agroecological districts. Food science and nutrition, 9(10), 5641-5647. https://doi.org/10.1002/fsn3.2527 |
||||
Dolas, K. A., Ranveer, R. C., Tapre, A. R., Nandane, A. S., & Sahoo, A. K. (2020). Effect of starch modification on physico-chemical, functional and structural characterization of cassava starch (Manihot esculenta Crantz). Food Research, 4(4), 1265-1271. https://doi.org/10.26656/fr.2017.4(4).075 |
||||
FAO (2022). Data on cassava production. FAO. | ||||
Gomes, A. M., da Silva, C. E. M., & Ricardo, N. M. (2005). Effects of annealing on the physicochemical properties of fermented cassava starch (Polvilho azedo). Carbohydrate Polymers, 60(1), 1-6. https://doi.org/10.1016/j.carbpol.2004.11.016 |
||||
Hirsch, J. B., & Kokini, J. L. (2002). Understanding the mechanism of cross‐linking agents (POCl3, STMP, and EPI) through swelling behavior and pasting properties of cross‐linked waxy maize starches. Cereal chemistry, 79(1), 102-107. https://doi.org/10.1094/CCHEM.2002.79.1.102 |
||||
Horstmann, S. W., Lynch, K. M., & Arendt, E. K. (2017). Starch characteristics linked to gluten-free products. Foods, 6(4), 29. https://doi.org/10.3390/foods6040029 |
||||
Ikegwu, O. J., Odo, M. O., & Okolk, E. C. (2011). Effect of annealing on the physicochemical properties of some under utilized legume starches. Nigerian Food Journal, 29(1), 19-28. | ||||
Ikuemonisan, E. S., Mafimisebi, T. E., Ajibefun, I., & Adenegan, K. (2020). Review of cassava production in Nigeria: Trends and decomposition analysis approach. Tarım Ekonomisi Araştırmaları Dergisi, 6(2), 102-114. https://doi.org/10.1016/j.heliyon.2020.e05089 |
||||
Kiczorowski, P., Kiczorowska, B., Samolińska, W., Szmigielski, M., & Winiarska-Mieczan, A. (2022). Effect of fermentation of chosen vegetables on the nutrient, mineral, and biocomponent profile in human and animal nutrition. Scientific Reports, 12, Article number 13422. https://doi.org/10.1038/s41598-022-17782-z |
||||
Nawaz, H., Waheed, R., Nawaz, M., & Shahwar, D. (2020). Physical and chemical modifications in starch structure and reactivity. Chemical Properties of Starch, 9, 13-35. https://doi.org/10.5772/intechopen.88870 |
||||
Nikolenko, M. V., Myrhorodska-Terentieva, V. D., Sakhno, Y., Jaisi, D. P., Likozar, B., & Kostyniuk, A. (2023). Hydrothermal Leaching of Amylose from Native, Oxidized and Heat-Treated Starches. Processes, 11(5), 1464. https://doi.org/10.3390/pr11051464 |
||||
Nkhata, S. G., Ayua, E., Kamau, E. H., & Shingiro, J. B. (2018). Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes. Food Science & Nutrition, 6(8), 2446-2458. https://doi.org/10.1002/fsn3.846 |
||||
Nuwamanya, E., Baguma, Y., Atwijukire, E., Acheng, S., & Alicai, T. (2015). Effect of cassava brown streak disease (CBSD) on cassava (Manihot esculenta Crantz) root storage components, starch quantities and starch quality properties. International Journal of Plant Physiology and Biochemistry, 7(2), 12-22 | ||||
Nuwamanya, E., Baguma, Y., Emmambux, N., Taylor, J., & Patrick, R. (2010). Physicochemical and functional characteristics of cassava starch in Ugandan varieties and their progenies. Journal of Plant Breed Crop Science, 2(1), 001-011. | ||||
Ojinnaka, M., Odimegwu, E., & Ilechukwu, R. (2016). Functional properties of flour and starch from two cultivars of aerial yam (Dioscorea bulbifera) in South East Nigeria. Journal of Agriculture and Veterinary Science, 2(13), 14-18. | ||||
Ojo, M. O., Oni, K. Femi, F. A., Idowu-Adebayo, F., Balogun, A., Ogunbande, B. J., & Ude, M. (2022). Analysis of different extraction solvents: Influence on some properties of aerial yam (Dioscore abulbifera) starch. African Journal of Food Science, 16(12), 326-333. https://doi.org/10.5897/AJFS2022.2173 |
||||
Onwuka, G. I. (2005). Food analysis and instrumentation. Naphtali Print, Surulere, Lagos., Nigeria. Pp. 93-140. | ||||
Oyewole, O., & Afolami, O. (2001). Quality and preference of different cassava varieties for 'lafun' production. Journal of Food Technology in Africa, 6(1), 27-29. https://doi.org/10.4314/jfta.v6i1.19281 |
||||
Oyeyinka, S. A., & Oyeyinka, A. T. (2018). A review on isolation, composition, physicochemical properties and modification of Bambara groundnut starch. Food Hydrocolloids, 75, 62-71. https://doi.org/10.1016/j.foodhyd.2017.09.012 |
||||
Paixão E Silva, G. L., Bento, J. A. C., Oliveira, A. R., Garcia, M. C., Soares Júnior, M. S., & Caliari, M. (2021). Pasting and thermal properties of fermented cassava (Manihot esculenta Crantz). Journal of Food Science and Technology, 58(4), 1441-1448. https://doi.org/10.1007/s13197-020-04656-3 |
||||
Paznocht, L., Kotíková, Z., Orsák, M., Lachman, J., & Martinek, P. (2019). Carotenoid changes of colored-grain wheat flours during bun-making. Food Chemistry, 277, 725-734. https://doi.org/10.1016/j.foodchem.2018.11.019 |
||||
Pérez, E., Gibert, O., Rolland-Sabaté, A., Jiménez, Y., Sánchez, T., Giraldo, A., Pontoire, B., Guilois, S., Lahon, C., Reynes, M., & Dufour, D. (2011). Physicochemical, functional, and macromolecular properties of waxy yam starches discovered from "Mapuey" (Dioscorea trifida) genotypes in the Venezuelan Amazon. Journal of Agricultural and Food Chemistry, 59(1), 263-273. https://doi.org/10.1021/jf100418r |
||||
Pranoto, Y., Anggrahini, S., & Efendi, Z. (2013). Effect of natural and Lactobacillus plantarum fermentation on in-vitro protein and starch digestibilities of sorghum flour. Food Bioscience, 2, 46-52. https://doi.org/10.1016/j.fbio.2013.04.001 |
||||
Rocha, T. S., Felizardo, S. G., Jane, J. L., & Franco, C. M. (2012). Effect of annealing on the semicrystalline structure of normal and waxy corn starches. Food Hydrocolloids, 29(1), 93-99. https://doi.org/10.1016/j.foodhyd.2012.02.003 |
||||
Sharma, R., Garg, P., Kumar, P., Bhatia, S. K., & Kulshrestha, S. (2020). Microbial fermentation and its role in quality improvement of fermented foods. Fermentation, 6(4), 106. https://doi.org/10.3390/fermentation6040106 |
||||
Sudhakara R. J., Parimalaval, I., Jagannadham, K., & Surendra Babu, A. (2023). Effect of Physical and chemical modification on characterization of cassava starch. High Technology Letters, 29(8), 765-775. | ||||
Tapia, M. S., Pérez, E., Rodríguez, P. E., Guzman, R., Ducamp-Collin, M. N., Tran, T., & Rolland-Sabaté, A. (2012). Some properties of starch and starch edible films from under-utilized roots and tubers from the Venezuelan Amazons. Journal of Cellular Plastics, 48(6), 526-544. https://doi.org/10.1177/0021955X12445291 |
||||
Tester, R. F., & Debon, S. J. (2000). Annealing of starch-a review. International Journal of Biological Macromolecules, 27(1), 1-12. https://doi.org/10.1016/S0141-8130(99)00121-X |
||||
Tortoe, C., Akonor, P. T., & Ofori, J. (2019). Starches of two water yam (Dioscorea alata) varieties used as congeals in yogurt production. Food Science and Nutrition, 7(3), 1053-1062. https://doi.org/10.1002/fsn3.941 |
||||
Udoh, L. I., Agogbua, J. U., Keyagha, E. R., & Nkanga, I. I. (2022). Carotenoids in Cassava (Manihot esculenta Crantz). In Carotenoids-New Perspectives and Application. Physiology. IntechOpen doi:10.5772/intechopen.105210. Retrieved from https://doi.org/10.5772/intechopen.105210 |
||||
Zia-ud-Din, Xiong, H., & Fei, P. (2017). Physical and chemical modification of starches: A review. Critical reviews in Food Science and Nutrition, 57(12), 2691-2705. https://doi.org/10.1080/10408398.2015.1087379 |