JOURNAL OF DRUGS AND PHARMACEUTICAL SCIENCE
Integrity Research Journals

ISSN: 2705-2222
Model: Open Access/Peer Reviewed
DOI: 10.31248/JDPS
Start Year: 2016
Email: jdps@integrityresjournals.org


Gas Chromatography Mass Spectrometry and Fourier transform Infrared Spectroscopy analysis of methanolic extract of Mimosa pudica L. leaves

https://doi.org/10.31248/JDPS2020.031   |   Article Number: FD914F9E1   |   Vol.4 (1) - April 2020

Received Date: 13 March 2020   |   Accepted Date: 14 April 2020  |   Published Date: 30 April 2020

Authors:  Ahamefula A. Ahuchaogu* , Godwin I. Ogbuehi , P. O. Ukaogo and Ifeanyi. E. Otuokere

Keywords: FT-IR, GC-MS, leaf extract, medicinal plants, Mimosa pudica.

The present study investigates the chemical constituents of a traditionally used ethno-medicinal plant Mimosa pudica Linn using Gas Chromatography Mass Spectrometry (GC/MS) and Fourier Transform Infrared Spectroscopy (FTIR). The identification of phytochemical compounds was based on the peak area, retention time, molecular weight, molecular formula, MS fragment ions. Thirteen phytochemical compounds were identified in the methanolic extract of leaves Mimosa pudica. The GC-MS analysis provide the existence of N, N'-Bis (Carbobenzyloxy)-lysine methyl(ester, Acetamide, N-methyl-N-[4-[4-fluoro-1-hexahydropyridyl]-2-butynyl]-, o-Ethylhydroxylamine,  Propanamide, 2-hydroxy-, 1-Allyl-4-(4-methoxyphenyl)-1H-pyrimidin-2-thion, Gentamicin a,  Mannosamine, 1H-Indole, 4-(3-methyl-2-butenyl)-. The FT-IR analysis revealed the presence of carbonyl (C=O) at 1705.3 Cm-1  , aliphatic stretching (C-H) at 2978.8 Cm-1  and 2944 Cm-1  and hydroxyl functional group (O-H) at 3313.6 Cm-1 These chemical compounds may exhibit various therapeutic properties such as antifungal, antibacterial, anti- inflammatory, anti-oxidant and others.

Ahamefula, A. A., Godwin, I. O., Obike, A. I., Chisom, S. E, Okoronkwo J. C., John Bull, O. E. (2018). GC-MS analysis of bioactive compounds from whole plant chloroform extract of Ageratum conyzoides. International Journal of Medicinal Plants and Natural Products, 4(2), 13-24.
Crossref
 
Anyanwu, M. U., & Okoye, R. C. (2017). Antimicrobial activity of Nigerian medicinal plants. Journal of Intercultural Ethnopharmacology, 6(2), 240.
Crossref
 
Autore, G., Caruso, A., Marzocco, S., Nicolaus, B., Palladino, C., Pinto, A., Popolo, A., Sinicropi, M. S., Tommonaro, G., & Saturnino, C. (2010). Acetamide derivatives with antioxidant activity and potential anti-inflammatory activity. Molecules, 15(3), 2028-2038.
Crossref
 
Berest, G. G., Voskoboynik, O. Y., Kovalenko, S. I., Antypenko, O. M., Nosulenko, I. S., Katsev, A. M., & Shandrovskaya, O. S. (2011). Synthesis and biological activity of novel N-cycloalkyl-(cycloalkylaryl)-2-[(3-R-2-oxo-2H-[1, 2, 4] triazino [2, 3-c] quinazoline-6-yl) thio] acetamides. European Journal of Medicinal Chemistry, 46(12), 6066-6074.
Crossref
 
Chinmoy, B., & Nongmaithem, R. C. (2019). The sensitive plant Mimosa pudica: A useful weed. International Journal of Scientific Development and Research, 4(5), 3.
 
Coimbra, A., & Magnanini, A. (1993). Considerations sobre Mimosa pudica no combate a arosao superficial. Anucio Braz Econ Floresta Institute Nac Pinho Brazi. Pp. 131-136.
 
Cortés-Rojas, D. F., Chagas-Paula, D. A., Da Costa, F. B., Souza, C. R. F, & Oliveira, W. P. (2013). Bioactive compounds in Bidens pilosa L. populations: a key step in the standardization of phytopharmaceutical preparations. Revista Brasileira de Farmacognosia, 23(1), 28-35.
Crossref
 
Edoga, H. O., Okwu, D. E., & Mbaebie B. O. (2005). Phytochemical constituents of some Nigerian Medicinal Plants. African Journal of Biotechnology, 4(7), 685-688.
Crossref
 
Ekaiko, M. U., Arinze, A. G., Iwe, C. U., & Asiegbu, E. (2016). Phytochemical constituents and antimicrobial potency of Aspilia africana. International Journal of Life Sciences Research, 4(1), 9-14.
 
Ekanem, A. P., & Udo, F. V. (2009). The Diversity of Medicinal plants in Nigeria: An Overview. In: African Natural Plant Products: New Discoveries and Challenges in Chemistry and Quality. ACS publications. Pp. 135-147. Retrieved from https://pubs.acs.org/doi/abs/10.1021/bk-2009-1021.ch007.
Crossref
 
Faleye, F. J., and Ogundaini,O.A. (2012). Evaluation of anti-oxidant and antimicrobial activities of two Isolates from Aspilia africana. International Research Journal of Pharmacy 3(7), 135-138.
 
Fernie, A. R., Trethewey, R. N., Krotzky, A. J., & Willmitzer, L. (2004). Metabolite profiling: from diagnostics to systems biology. Nature Reviews Molecular Cell Biology, 5(9), 763-769.
Crossref
 
Hafsa, A., Sakshi, S., Anurag, M., & Rajiv, G. (2012). Mimosa pudica L. (Laajvanti): An overview. Phamacognosy Review, 6(12), 115-124.
Crossref
 
Hussein, E. M., Al-Rooqi, M. M., Abd El-Galil, S. M., & Ahmed, S. A. (2019). Design, synthesis, and biological evaluation of novel N 4-substituted sulfonamides: acetamides derivatives as dihydrofolate reductase (DHFR) inhibitors. BMC Chemistry, 13, Article Number 91.
Crossref
 
Kell, D. B., Brown, M., Davey, H. M., Dunn, W. B., Spasic, I., & Oliver, S. G. (2005). Metabolic footprinting and systems biology: the medium is the message. Nature Reviews Microbiology, 3(7), 557-565.
Crossref
 
Lifongo, L. L., Simoben, C. V., Ntie-Kang, F., Babiaka, S. B., & Judson, P. N. (2014). A bioactivity versus ethnobotanical survey of medicinal plants from Nigeria, West Africa. Natural Products and Bioprospecting, 4, 1-19.
Crossref
 
Liu, Z., Zhou, Z., Tian, W., Fan, X., Xue, D., Yu, L., Yu, Q., & Long, Y. Q. (2012). Discovery of novel 2‐N‐aryl‐substituted benzenesulfonamidoacetamides: orally bioavailable tubulin polymerization inhibitors with marked antitumor activities. Medicinal Chemistry, 7(4), 680-693.
Crossref
 
McCarthy, O., Musso-Buendia, A., Kaiser, M., Brun, R., Ruiz-Perez, L. M., Johansson, N. G., Pacanowska, D. G., & Gilbert, I. H. (2009). Design, synthesis and evaluation of novel uracil acetamide derivatives as potential inhibitors of Plasmodium falciparum dUTP nucleotidohydrolase. European Journal of Medicinal Chemistry, 44(2), 678-688.
Crossref
 
McDonald, S., Prenzler, P. D., Antolovich, M., & Robards, K. (2001). Phenolic content and antioxidant activity of olive extracts. Food chemistry, 73(1), 73-84.
Crossref
 
Obute, G. C, & Osuji, L. C. (2002. Environmental Awareness and Dividends: A discourse. African Journal of Interdisciplinary Studies, 3(1), 90-94.
 
Okwulehie, I. C., & Akanwa, F. E. (2013). Antimicrobial activity of ethanol extract of four indigenous plants from South Eastern Nigeria. ARPN Journal of Science and Technology, 3, 350-355.
 
Patro, G., Bhattamisra, S. K., & Mohanty, B. K. (2016). Effects of Mimosa pudica L. leaves extract on anxiety, depression and memory. Avicenna Journal of Phytomedicine, 6(6): 696-710.
 
Rohini, K., & Srikumar, P. S. (2014). Therapeutic role of coumarins and coumarin-related compounds. Journal of Thermodynamics and Catalysis, 5(2), Article Number 130.
Crossref
 
Sriram, S., Meenaa, V., Kavitha, V., Agnel, A., & John, N. (2011). GC-MS study and phytochemical profiling of Mimosa pudica Linn. Journal of Pharmacy Research, 4(3),741-742.
 
Varnika, S., Ashish, S., & Imran, A. (2012). A review on ethnomedical and traditional uses of Mimosa pudica. International Research Journal of Pharmacy, 3(2), 41-44.
 
Zhang, J., Yuan, K., Zhou, W. L., Zhou, J., & Yang, P. (2011). Studies on the active components and antioxidant activities of the extracts of Mimosa pudica Linn. from southern China. Pharmacognosy Magazine, 7(25), 35-39.
Crossref