ISSN: 2705-2222
Model: Open Access/Peer Reviewed
DOI: 10.31248/JDPS
Start Year: 2016
Email: jdps@integrityresjournals.org
https://doi.org/10.31248/JDPS2019.019 | Article Number: F570B4231 | Vol.3 (1) - April 2019
Received Date: 27 March 2019 | Accepted Date: 24 April 2019 | Published Date: 30 April 2019
Authors: Agboola S. S.* , Akanmu M. A. and Ilesanmi O. R.
Keywords: Anchomanes difformis, antidepressant, hydro-alcoholic extract, mice.
In ethno-medicinal practice in the South-western part of Nigeria, the rhizome of Anchomanes difformis is claimed to be effective in the management of mental illness. This study determined the antidepressant effects of hydro-alcoholic extract and fractions of Anchomanes difformis rhizome and the likely mechanisms of action of the extract and the most active fraction in mice. The extract was partitioned into n-hexane, ethylacetate, butanol and distilled water to obtain n-hexane, ethylacetate, butanol and residual aqueous fractions, respectively. The extract and fractions were administered to mice of both sexes (18 to 25 g) at 60, 125, 250, 500, and 1000 mg/kg, orally. Tail suspension and forced swimming anti-depressant animal models were used. The likely mechanism of anti-depressant action was assessed using yohimbine and cyproheptadine. The data were analyzed using one-way ANOVA followed by Student-Newman-Keul’s post hoc test with the level of significance taken as p<0.05. The extract and ethylacetate fraction at 60 to 250 mg/kg significantly (p<0.05) reduced the period of immobility in both the tail suspension and forced swimming tests without significantly impairing the locomotor activity, suggesting an anti-depressant effect. This effect was reversed by yohimbine (1 mg/kg, i.p.), an α2-adrenergic receptor antagonist, yohimbine and also by cyproheptadine (0.5 mg/kg, i.p.), a serotonergic receptor antagonist. The study concluded that the extract and ethylacetate fraction of A. difformis rhizome possessed an anti-depressant effect in mice which was probably mediated through α2-adrenergic and serotonergic pathways.
Adongo, D. W., Kukuia, K. K. E., Mante, P. K., Ameyaw, E. O., & Woode, E. (2015). Antidepressant-like effect of the leaves of Pseudospondias microcarpa in mice: evidence for the involvement of the serotoninergic system, NMDA receptor complex, and nitric oxide pathway. BioMed Research International, Volume 2015, Article ID 397943, 15 pages. Crossref |
||||
Agboola S. S. (2017). Neuropharmacological effects of the aqueous extract and fractions of Anchomanes difformis (Blume) Engler (Araceae) rhizome in mice (Ph.D. Thesis), Department of Pharmacology, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria. | ||||
Akah, P. A., & Njike, H. A. (1990). Some pharmacological effects of rhizome aqueous extract of Anchomanes difformis. Fitoterapia, 61(4), 368-370. | ||||
Akanmu, M. A., Olowookere, T. A., Atunwa, S. A., Ibrahim, O. I., Lamidi, O. F., Adams, P. A., Ajimuda, B. O., & Adeyemo, L. E. (2011). Neuropharmacological effects of Nigerian honey in mice. African Journal of Traditional Complementary and Alternative Medicine, 8(3), 230-249. Crossref |
||||
Carney, R., Dardis, C., Cullen, W. K., Felipo, V., Anwyl, R., & Rowan, M. J. (2002). Early spatial memory deficit induced by 2, 5-hexanedione in the rat. Toxicology Letters, 128(1-3), 107-115. Crossref |
||||
Cryan, J. F., & Lucki, I. (2002). Assessing antidepressant activity in rodents: recent developments and future needs. Trends in Pharmacological Sciences, 23(5), 238-245. Crossref |
||||
De Vry, J. (1995). 5-HT 1A receptor agonists: recent developments and controversial issues. Psychopharmacology, 121(1), 1-26. Crossref |
||||
Delgado, P. L., Miller, H. L., Salomon, R. M., Licinio, J., Krystal, J. H., Moreno, F. A., Heninger, G. R., & Charney, D. S. (1999). Tryptophan-depletion challenge in depressed patients treated with desipramine or fluoxetine: implications for the role of serotonin in the mechanism of antidepressant action. Biological Psychiatry, 46(2), 212-220. Crossref |
||||
Depression Guideline Panel (1993). Clinical Practice Guideline, Number 5: Depression in Primary Care: Volume 2. Treatment of Major Depression. Rockville,MD: United States Department of Health and Human Services, Public Health Service, Agency for Health Care Policy and Research. AHCPR Publication No. 93-0551. | ||||
Dhingra, D. & Goyal, P. K. (2008). Inhibition of MAO and GABA: Probable mechanisms for antidepressant-like activity of Nardostachstachys jatamansi DC. in mice. Indian Journal of Experimental Biology, 46, 212-218. | ||||
Dunn, A. J., & Swiergiel, A. R. (2005). Effects of interleukin-1 and endotoxin in the forced swim and tail suspension tests in mice. Pharmacology and Biochemistry of Behaviours, 81(3), 688-693. Crossref |
||||
Eke, I. G., Obioha, F. C., & Anaga, A. O. (2013). Evaluation of the methanolic rhizome extract of Anchomanes difformis for analgesic and antipyretic activities. International Journal of Basic and Applied Sciences, 2(4), 289-296. Crossref |
||||
Foyet H. S., Tsala E. D., Bouba A. A., & Hritcu L. (2012). Anxiolytic and antidepressant-like effects of the aqueous extract of Alafia multiflora stem barks in rodents. Hindawi Publishing Corporation Advances in Pharmacological Sciences Volume 2012, Article ID 912041, 8 pages. Crossref |
||||
Haigh, A., & Boyce, P. C. (2012). Araceae. Flora Zambesiaca, 12(1), 1-54. | ||||
Katzelnick, D. J., Kobak, K. A., Greist, J. H., Jefferson J. W., Mantle J. M., & Serlin, R. C. (1995). Sertraline for social phobia: a double-blind, placebo-controlled crossover study. American Journal of Psychiatry, 152(9), 1368-1371. Crossref |
||||
Katzung, B. G. (2007). Basic and Clinical Pharmacology, 10th edition, New York, Mc Graw-Hill Companies, Inc. | ||||
Kiss, J. P. (2008). Theory of active antidepressants: A nonsynaptic approach to the treatment of depression. Neurochemistry International; 52(1), 34-39. Crossref |
||||
Lorke, D. (1983). A new approach to practical acute toxicity testing. Archives of Toxicology, 54(4), 275-287. Crossref |
||||
Porsolt, R. D., Bertin, A., & Jalfre, M. (1977). Behavioral despair in mice: a primary screening test for antidepressants. Archives of International Pharmacodynamics and Therapeutics, 229(2), 327-336. | ||||
Rang, H. P., Dale, M. M., Ritter, J. M., & Flower, R. J. (2007). Rang and Dale's Pharmacology, 6th edition, Philadelphia, Churchill Livingstone-Elsevier. | ||||
Rapaport, M. H., Wolkow, R., Rubin, A., Hackett, E., Pollack, M., & Ota, K. Y. (2001) Sertraline treatment of panic disorder: results of a long-term study. Acta Psychiatric Scandinavia, 104(4), 289-298. Crossref |
||||
Santos, T., Baungratz, M. M., Haskel, S. P., de Lima, D. D., da Cruz, J. N., Dal Magro, D. D., & da Cruz, J. G. P. (2012). Behavioral interactions of simvastatin and fluoxetine in tests of anxiety and depression. Neuropsychiatric Disease and Treatment, 8, 413-422. Crossref |
||||
Siqueira, I. R., Lara, D. R., Silva, D., Gaieski, F. S., Nunes, D. S., & Elisabetsky E. (1998). Psychopharmalogical properties of Ptochopetalum olacoides Bentham (Olacaceae). Pharmaceutical Biology, 36(5), 327-334. Crossref |
||||
Soladoye, M. O., Sonibare, M. A., Nadi, A. O., & Alabi, D. A. (2005). Indigenous angiosperm biodiversity of Olabisi Onabanjo University permanent site African Journal of Biotechnology, 4(5), 554-562. | ||||
Steru, L., Chermat, R., Thierry, B., & Simon, P. (1985). The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology, 85(3), 367-370. Crossref |
||||
Zomkowski, A. D. E., Santos, A. R. S., & Rodrigues, A. L. S. (2006). Putrescine produces antidepressant-like effects in the forced swimming test and in the tail suspension test in mice. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 30(8), 1419-1425. Crossref |