Integrity Research Journals

ISSN: 2536-7064
Model: Open Access/Peer Reviewed
DOI: 10.31248/JBBD
Start Year: 2016

Investigating the breeding habitats and kdr allele frequency of malaria vectors in Anambra Central Senatorial Zone, Southeast Nigeria   |   Article Number: D7DB5E534   |   Vol.8 (4) - August 2023

Received Date: 29 May 2023   |   Accepted Date: 27 June 2023  |   Published Date: 30 August 2023

Authors:  Emmanuel O. Ogbuefi* , Dennis N. Aribodor , Tolulope A. Oyeniyi and Emmanuel I. Obiefula

Keywords: resistance, Insecticide, Anopheles coluzzii, Anopheles gambiae, pyrethroids

Malaria, transmitted by infected female Anopheles mosquitoes, is a parasitic disease of major public health importance in Nigeria. Various classes of insecticides have played significant role in the control and elimination of malaria by attacking the vectors. Unfortunately, the success of the use of insecticides in the control of malaria vectors is threatened by the emergence of insecticidal resistance. This study was therefore aimed at determining the resistance status of Anopheles gambiae s. l. in communities in Anambra State, southeast Nigeria. Larval samples were collected from diverse habitats and reared to adult for susceptibility test. Target site resistance assays were carried out and genotypic differentiation test was performed to assess variability of the allelic frequencies of the kdr (L1014F) mutation. The results showed that Anopheles gambiae was the predominant vector (54.2%), followed by Anopheles coluzzii (45.8%). The distribution of the frequency of resistant allele of the kdr gene F (L1014F) showed that the number of homozygous resistant genotype (RR) in Awka North LGA for An. gambiae and An. coluzzii species was highest (31), followed by Awka South (20), and Njikoka (5) LGAs. Also, the number of Heterozygous resistant genotype (Rr) was highest in Awka South (7), followed by Awka North (2), and none was recorded in Njikoka LGA. Homozygous resistant genotype (RR) was frequently observed in the three study areas of Anambra State and is a threat to the use of pyrethroids for insecticidal control of malaria vectors. There is an urgent need for implementation of insecticide resistance management and monitoring in Anambra State to assess the spread of resistance which may expand malaria vector resistance to the remaining classes of insecticides (organophosphates and carbamates) on the long run.

Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18(2), 265-267.
Afolabi, O. J., Simon-Oke, I. A., & Osomo, B. O. (2013). Distribution, abundance and diversity of mosquitoes in Akure, Ondo State, Nigeria. Journal of Parasitology and Vector Biology, 5(10), 132-136.
Aribodor, D. N, Ikpeze, O. O., Onyido, A. E., & Okoye, C. M. (2011a). Survey of indoor adult malaria vectors and challenges of using long lasting insecticide treated nets in malaria control in Awka-Etiti, Anambra State, Nigeria. The Nigerian journal of Parasitology, 32(2):163-167.
Aribodor, D. N., Nwaorgu, O. C., Ozumba, N. A., & Etega, H. (2011b). Intermittent preventive treatment of malaria in pregnancy in nigeria: need for improvement in drug administration during antenatal care. Journal of US-China Medical Science, 74(8), 46-50.
Betson, M., Jawara, M., & Awolola, T. S. (2009). Status of insecticide susceptibility in Anopheles gambiae sl from malaria surveillance sites in The Gambia. Malaria journal, 8, Article number 187.
Dalhatu, A., Omar, A. A., & Bagari, H. (2016). Surveillance of mosquito species abundance and composition in Azare, Katagum local government of Bauchi State, Nigeria. Journal of Pharmacy and Biological Sciences, 11(6), 105-109.
Egwu, O., Ohaeri, C. C., Amaechi, E. C., & Ehisianya, C. N. (2018). Distribution and abundance of mosquito larvae in Ohafia, Abia State, Nigeria. Cuadernos de Investigación UNED, 10(2), 379-385.
Enete, I. C. (2004). A study of Enugu rainfall patterns from the viewpoint of precipitation dynamics. Nigeria Journal of Research and Production, 5(4), 98-108.
Enete, I. C. (2014). Impacts of climate change on agricultural production in Enugu State, Nigeria. Journal of Earth Science & Climatic Change, 5(9), Article number 234.
Eze N. C., Ezihe, E. K., & Chukwu, M. C. (2018). Larval abundance, distribution and species composition of mosquitoes in Obio-Akpor LGA, Rivers State, Nigeria. International Journal of Entomology Research, 3(2)85-90.
Gatton, M. L., Chitnis, N., Churcher, T., Donnelly, M. J., Ghani, A. C., Godfray, H. C. J., Gould, F., Hastings, I., Marshall, J., Ranson, H., & Lindsay, S. W. (2013). The importance of mosquito behavioural adaptations to malaria control in Africa. Evolution, 67(4), 1218-1230.
Gnanguenon, V., Agossa, F. R., Badirou, K., Govoetchan, R., Anagonou, R., Oke-Agbo, F., Azondekon, R., Agbanrin Youssouf, R., Attolou, R., Tokponnon, F. T., & Akogbeto, M. C. (2015). Malaria vectors resistance to insecticides in Benin: current trends and mechanisms involved. Parasites & vectors, 8, Article number 223.
Goselle, O. N., Amobi, L. O., Ojile, J. O., David, A., Nanvyat, N., Adulugba, I. A., Kumbak, D., Udeh, E.O., Mbaya, Y. M., & Mafuyai, H. B. (2017). Abundance of mosquitoes larvae in various microhabitats and the concern for invasion of human community. International Journal of Mosquito Research, 4(4), 119-125
Goudet, J., Raymond, M., de Meeüs, T., & Rousset, F. (1996). Testing differentiation in diploid populations. Genetics, 144(4), 1933-1940.
Habibu, U. A., Andrew, J. S., Hapca, S., Mukhtar, M. D., & Yusuf, Y. D. (2017). Malaria vectors resistance to commonly used insecticides in the control of Malaria in Bichi, Northern Nigeria. Bayero Journal of Pure and Applied Sciences, 10(1), 1-6.
Hemingway, J., Hawkes, N. J., McCarroll, L., & Ranson, H. (2004). The molecular basis of insecticide resistance in mosquitoes. Insect Biochemistry and Molecular Biology, 34(7), 653-665.
Ibrahim, S. S., Manu, Y. A., Tukur, Z., Irving, H., & Wondji, C. S. (2014). High frequency of kdr L1014F is associated with pyrethroid resistance in Anopheles coluzzii in Sudan savannah of northern Nigeria. BMC Infectious Diseases, 14, Article number 441.
Irikannu, K. C., & Chukwuekezie, O. C. (2015). Malaria and man-biting mosquitoes in tropical Africa. LAP LAMBERT Academic Publishing.
Manga, L. (2002). Vector-control synergies, between'roll back malaria'and the Global Programme to Eliminate Lymphatic Filariasis, in the African region. Annals of Tropical Medicine and Parasitology, 96, S129-132.
Mbanugo, J. I., & Okpalaononuju, C. N. (2003). Surveillance of mosquito vectors in some habitats of Awka metropolis Anambra State, Nigeria. Nigerian Journal of Parasitology, 24, 185-190.
Najera, J. A., & Zaim, M. (2002). Malaria vector control -Decision making criteria and procedures for judicious use of insecticides. Document WHO/CDS/WHOPES/2002.5. World Health Organization Geneva.
National Bureau of Statistics (2006). 2006 Nigeria Census. National Population Commission.
Okonkwo, N. J., Obiechina, I. O., Ugha, C. N., Irikannu, K. C., Obianumba, S. N., Okoye-Uzochukwu, C. I., Iwuora, O. I., & Chinweoke, J. O. (2014). Mosquito species composition in Oba, Idemili South local government area of Anambra state. Researcher, 6(8), 51-56.
Okorie, P. N., Ademowo, O. G., Irving, H., Kelly‚ÄźHope, L. A., & Wondji, C. S. (2015). Insecticide susceptibility of A nopheles coluzzii and A nopheles gambiae mosquitoes in I badan, Southwest Nigeria. Medical and veterinary entomology, 29(1), 44-50.
Onyido, A. E., Agbata, V. O., Umeanaeto, P. U., & Obiukwu, M. O. (2011). Ecology of malaria vectors in a rainforest suburban community of Nigeria. African Research Review, 5(2), 293-298.
Onyido, A. E., Ugha, C. N., Eneanya, O. A., Umeanaeto, P. U., Egbuche, C. M., Obiechina, I. O., Ezugbo-Nwobi, I. K., & Nwangwu, U. C. (2014). Malaria vector bionomics in Abagana community of Anambra State, Southeastern Nigeria. Journal of American Science, 10(2), 157-162.
Schaefer, C. H., & Mulligan, F. S. (1991). Potential for resistance to pyriproxyfen: a promising new mosquito larvicide. Journal of the American Mosquito Control Association, 7(3), 409-411.
Simon-Oke, I. A., Afolabi, O. J., & Olofintoye, L. K. (2012). Species abundance and monthly distribution of adult mosquito vector in Ekiti State, Nigeria. FUTA Journal of Research in Science, 1, 83-88.
Soderlund, D. M., & Knipple, D. C. (2003). The molecular biology of knockdown resistance to pyrethroid insecticides. Insect Biochemistry and Molecular Biology, 33(6), 563-577.
Suhrbier, A. (1991). Immunity to the liver stage of malaria. Parasitology Today, 7(7), 160-163.
Tamarin, R., & Leavitt, R. W. (1991). Principles of genetics. Brown Publishers, Dubuque. Pp. 607-11.
Toé, K. H., N'Falé, S., Dabiré, R. K., Ranson, H., & Jones, C. M. (2015). The recent escalation in strength of pyrethroid resistance in Anopheles coluzzi in West Africa is linked to increased expression of multiple gene families. BMC Genomics, 16, Article number 146.
Toure, Y. T., Petrarca, V., Traore, S. F., Coulibaly, A., Maïga, H. M., Sankaré, O., Sow, M., Di Deco, M. A., & Coluzzi, M. (1994). Ecological genetic studies in the chromosomal form size and structure. Mopti of Anopheles gambiae ss. Street. in Mali, West Africa, Genetica 94(2-3), 213-23.
World Health Organization (2010). World malaria report. World Health Organization, Geneva.
World Health Organization (WHO) (2018). Report of the WHO informal consultation: Test procedures for insecticide resistance monitoring in malaria vectors, bio-efficacy and persistence of insecticides on treated surfaces. WHO/CDS/CPC? MALARIA 98.12. Geneva, Switzerland.
World Health Organization. (1995). The malaria manual: Guidelines for the rapid assessment of economic and cultural aspects of malaria. TGR/SER/MSR/95/. World Health Organization, Geneva. Pp. 170-179.
World Health Organization. (2016). Test procedures for insecticide resistance monitoring in malaria vector mosquitoes, 2nd edition. Geneva: World Health Organization.
Zufelato, M. S., Bitondi, M. M. G., Simões, Z. L. P., & Hartfelder, K. (2000). The juvenile hormone analog pyriproxyfen affects ecdysteroid-dependent cuticle melanization and shifts the pupal ecdysteroid peak in the honey bee (Apis mellifera). Arthropod Structure & Development, 29(2), 111-119.