Integrity Research Journals

ISSN: 2536-7099
Model: Open Access/Peer Reviewed
DOI: 10.31248/JASVM
Start Year: 2016

Addition of red tomato extract in feeds using protein sources and calcium microparticles on protein digestibility and meat production in broiler chickens   |   Article Number: 3AB0A4C27   |   Vol.8 (5) - October 2023

Received Date: 24 September 2023   |   Accepted Date: 19 October 2023  |   Published Date: 30 October 2023

Authors:  Lilik Krismiyanto* , Nyoman Suthama , Fajar Wahyono and Alda Alvionita

Keywords: Broiler, red tomato extract, protein and calcium of microparticle.

The study aimed to assess the effect of adding red tomato extract in feeds using protein sources and calcium microparticles on protein digestibility, meat calcium mass, meat protein mass, and meat weight in broiler chickens. Two hundred day-old broiler chicks (Cobb-CP 707) unsexed aged 8 days with an average weight of 169.19 ± 5.67 g. Red tomato extract (RTE) as an antioxidant source. The study used a completely randomized design with 5 treatments and 4 replicates (each 10 birds). The treatments include T0: control feed, T1: T0 + RTE 100 mg/kg, T2: T0 + RTE 200 mg/kg, T3: T0 + RTE 300 mg/kg, and T4: T0 + RTE 400 mg/kg. Parameters measured protein digestibility, meat calcium mass, meat protein mass and meat weight. Data were processed using analysis of variance and Duncan's test in the SPSS version 16 program. The addition of 100-400 mg/kg RTE in feeds using microparticle protein and calcium sources had a significant effect (p<0.05) on protein digestibility, meat calcium mass, meat protein mass and meat weight. The conclusion is that the addition of red tomato extract at 400 mg/kg in feeds using microparticle protein and calcium sources increases protein digestibility, meat calcium mass, meat protein mass and meat weight in broiler chickens.

Ain, O. N., Suthama N., & Sukamto, B. (2020). Feeding a ration with protein and calcium microparticles added with lactobacillus acidophilus or acidifier on immune system and carcass weight of broiler. Journal of Sain Peternakan Indonesia, 15(4), 348-354.
Alagawany, M., El‐Saadony, M. T., El‐Rayes, T. K., Madkour, M., Loschi, A. R., Di Cerbo, A., & Reda, F. M. (2022). Evaluation of dried tomato pomace as a non‐conventional feed: Its effect on growth, nutrients digestibility, digestive enzyme, blood chemistry and intestinal microbiota of growing quails. Food and Energy Security, 11(4), e373.
Al-Jrrah, I. A., & Abbas, R. J. (2020). Effect of natural and synthetic sources of lycopene on productive performance, carcass quality and viscera relative weights of Japanese quail Coturnx japonica Temminck & Schlegel, 1849. Basrah Journal of Agricultural Sciences, 33(2), 52-66.
Arain, M. A., Mei, Z., Hassan, F. U., Saeed, M., Alagawany, M., Shar, A. H., & Rajput, I. R. (2018). Lycopene: a natural antioxidant for prevention of heat-induced oxidative stress in poultry. World's Poultry Science Journal, 74(1), 89-100.
Bolton, W. (1967). Poultry Nutrition. HMSO, London. MAFF Bulletin. No 174.
Candra, A. A. (2014). Comparison of the activity of mangosteen peel extract and various antioxidants on broiler performance. Journal Penelitian Pertanian Terapan, 15(1), 68-74.
Chen, J., Cao, X., Huang, Z., Chen, X., Zou, T., & You, J. (2023). Research progress on lycopene in swine and poultry nutrition: An update. Animals, 13(5), 1-22.
Cholis, M. A., Suthama, N., & Sukamto, B. (2018). Feeding microparticle protein diet combined with Lactobacillus sp. on existence of intestinal bacteria and growth of broiler chickens. Journal of the Indonesian Tropical Animal Agriculture, 43(3), 265-271.
Dewi, E. S., Hakim, A. dan Savalas, L. R. T. (2019). Isolation of lycopene from tomato fruit (Solanum lycopersicum L) and lycopene activity test against Salmonella thypi bacteria. Journal of Penelitian Pendidikan, 5(1), 109-114.
Fararh, K. M., El-Aziz, A. M. A., Alhelbawy, N. A., & Basiouni, S. (2019). Effect of lycopene and vitamin E on hematological parameters, performance, bacterial count and histopathological alterations in E. coli infected broilers. Benha Veterinary Medical Journal, 37(1), 197-203.
Jalalinasab, A., Nobakht, A., & Razzaghzadeh, S. (2014). The effects of different levels of tomato pomace and processing methods on production performance and blood metabolites of native laying Hens. Iranian Journal of Applied Animal Science, 4(2), 379-385.
Maharani, P., Suthama, N., & Wahyuni, H. I. (2013). Calcium mass and meat protein in laying hens fed diets using Azzolla microphylla. Animal Agriculture Journal, 2(1), 18-27.
Meng, Q., Zhang, Y., Li, J., Shi, B., Ma, Q., & Shan, A. (2022). Lycopene affects intestinal barrier function and the gut microbiota in weaned piglets via antioxidant signalling regulation. The Journal of Nutrition, 152(11), 2396-2408.
Mezbani, A., Kavan, B. P., Kiani, A., & Masouri, B. (2019). Effect of dietary lycopene supplementation on growth performance, blood parameters and antioxidant enzymes status in broiler chickens. Livestock Research for Rural Development, 31(1).
Pu, F., Chen, N., & Xue, S. (2016). Calcium intake, calcium homeostasis and health. Food Science and Human Wellness, 5(1), 8-16.
Rini, S. R., Sugiharto, S, & Mahfudz, L. D. (2019). Effect of different breeding temperatures on the physical quality of meat of broiler chicken at finisher period. Journal Sains Peternakan Indonesia, 14(4), 387-395.
Sari, M. L., & Romadhon, M. (2017). Feeding management of broiler chicken in Tanjung Pinang Village, Tanjung Batu Subdistrict, Ogan Ilir Regency. Journal of Peternakan Sriwijaya, 6(1), 37-43.
Sujana, D., Wardani, D., & Nurul, N. (2020). Article Review: Potential of lycopene from tomato fruit (Solanum lycopersicum L) as a topical antiaging agent. Journal of Insan Farmasi Indonesia, 3(1), 56-65.
Suthama, N. (2003). Protein metabolism in growing-period native chickens fed diets containing fermented rice bran. Journal of Pengembangan Peternakan Tropis, Special Edition (pp. 44-48).
Suthama, N., & Wibawa, P. J. (2016). Digestibility evaluation of microparticle protein derived from fish meal and soybean meal in broiler chicken. Proceeding of the 3rd Animal Production International Seminar (3rd APIS) & 3rd ASEAN Regional Conference on Animal Production (3rd ARCAP), October 19 - 21, 2016. Batu, Indonesia. Pp. 269-272.
Suthama, N., & Wibawa, P. J. (2018). Amino acids digestibility of pelleted microparticle protein of fishmeal and soybean meal in broiler chickens. Journal of the Indonesian Tropical Animal Agriculture, 43(2), 169-176.
Suthama, N., Hayashi, K., Toyomizu, M., & Tomita, Y. (1991). Interactions of exogenous thyroxine and dietary protein levels on growth and muscle protein metabolism in broiler chickens. Japanese Poultry Science, 28(1), 1-10.
Suthama, N., Sukamto, B., Mangisah, I., & Krismiyanto, L. (2021). Immune status and growth of broiler fed diet with microparticle protein added with natural acidifier. Tropical Animal Science Journal, 44(2), 198-204.
Syafitri. Y. E., Yunianto V. D., & Suthama N. (2015). Effects of beluntas (Pluchea indica Less) leaf extract and chlorine on calcium mass and meat protein mass in broiler chickens. Animal Agriculture Journal, 4(1), 155- 164.
Wahju, J. (1997). Ilmu nutrisi unggas. UGM Press, Yogyakarta.
Wan, X., Yang, Z., Ji, H., Li, N., Yang, Z., Xu, L., Yang, H. & Wang, Z. (2021). Effects of lycopene on abdominal fat deposition, serum lipids levels and hepatic lipid metabolism-related enzymes in broiler chickens. Animal Bioscience, 34(3), 385-392.
Wang, S., Wu, H., Zhu, Y., Cui, H., Yang, J., Lu, M., Cheng, H., Gu, L., Xu, T., & Xu, L. (2022). Effect of Lycopene on the Growth Performance, Antioxidant Enzyme Activity, and Expression of Gene in the Keap1-Nrf2 Signaling Pathway of Arbor Acres Broilers. Frontiers in Veterinary Science, 9, Article number 833346.