JOURNAL OF ANIMAL SCIENCE AND VETERINARY MEDICINE
Integrity Research Journals

ISSN: 2536-7099
Model: Open Access/Peer Reviewed
DOI: 10.31248/JASVM
Start Year: 2016
Email: jasvm@integrityresjournals.org


Development of buffalo ear skin fibroblast cell line for somatic cell nuclear transfer

https://doi.org/10.31248/JASVM2023.361   |   Article Number: 1E8A88721   |   Vol.8 (3) - June 2023

Received Date: 06 February 2023   |   Accepted Date: 09 March 2023  |   Published Date: 30 June 2023

Authors:  M. F. Afroz* , G. K. Deb , K. T. Tahira , Z. C. Das , T. N. Nahar and S. M. J. Hossain

Keywords: Buffalo, cryopreservation, ear skin, fibroblast cell line, primary culture

Fibroblast is the principal active cell of connective tissue. It can be used as a useful tool for reproductive and therapeutic studies for its ability to easily grow in culture, create a preferable environment to growth and can be used as both for primary and permanent cell lines. Somatic cell nuclear transfer (SCNT) is commonly used for complete genetic reprogramming of a fully differentiated cell (e.g., fibroblast). SCNT is influential means for studying genomic imprinting, nuclear-cytoplasmic interaction, totipotency, and the contribution of paternal and maternal genomes to developing embryos. For reproductive cloning, SCNT is a fundamental step. So, the objective of this study was to adapt buffalo fibroblast cell culture protocol in order to develop fibroblast cell line for SCNT. River type buffalo ear skin tissues were used for developing primary cell culture to establish fibroblast cell line. Cells were grown in vitro. The general morphology and growth of cell population and presence of any microbial contaminants were checked regularly under an inverted microscope in phase contrast. Cells were counted by using hemocytometers. Sliced tissue was sown in 15 culture dishes to create primary and subcultures, and cells were cultivated in 6 of those dishes. Cell confluence varied from 70 to 80%. There were performed subcultures. Cell confluence in passages 1 through 10 varied from 73 to 90%. Cell concentration was 2.72 x 105, 2.68 x 105, and 2.65 x 105 per ml in passages 1, 5, and 10, respectively. Viable cells ranged from 84-93% of the total cells in passages 1 through 10. Different passages of cultivated fibroblast cells showed significantly varying viability (p< 0.05). Cultured fibroblast cell lines could now be preserved using cryotechnology.

Daneshvar, A. A., Mohebali, N., Farzaneh, P., Shahzadeh Fazeli, S. A., Nikfarjam, L., Ashouri Movasagh, S., Moradmand, Z., Ganjibakhsh, M., Nasimian, A., Izadpanah, M., Vakhshiteh, F., Sadat, G. N., Masoudi, N, S, Farghadan M, Mohamadi, M. S., Khalili, M., & Khaledi, K. J. (2017). Establishment and characterization of Caspian horse fibroblast cell bank in Iran. In Vitro Cellular & Developmental Biology-Animal, 53, 337-343.
Crossref
 
Deb, G. K., Kabir, M. A., Khan, M.Y., A, Nahar, T. N., Rahman, M. M., & Islam, M. R.(2014). Establishment of embryo culture system maintaining genetic identity of embryos. Proceeding of the Annual Research Review Workshop of Bangladesh Livestock Research Institute, Savar, Dhaka.
 
Evans, G. S., Flint, N., Somers, A. S., Eyden, B., & Potten, C. S. (1992). The development of a method for the preparation of rat intestinal epithelial cell primary cultures. Journal of cell science, 101(1), 219-231.
Crossref
 
Forsberg, E. J., Strelchenko, N. S., Augenstein, M. L., Betthauser, J. M., Childs, L. A., Eilertsen, K. J., Enos, J. M., Forsythe, T. M., Golueke, P. J., Koppang, R. W., Lange, G., Lesmeister, T. L., Mallon, K. S, Mell, G. D., Misica, P. M., Pace, M. M., Pfister-Genskow, M., Voelker, G. R., Watt, S. R. & Bishop, M. D. (2002). Production of cloned cattle from in vitro systems. Biology of Reproduction, 67(1), 327-333.
Crossref
 
Groeneveld, E. (2007). A worldwide emergency programme for the creation of national genebanks of endangered breeds in animal agriculture. Stočarstvo, 61(6), 427-434.
 
Harrison, R. G. (1907). Observations on the living developing nerve fiber. Proceedings of the Society for Experimental Biology and Medicine, 4(1), 140-143.
Crossref
 
Ho, S. K., Lister, E. E., &Touchbum, S. P. (1997). An overview of Canadian farm animal genetic resources conservation and its associated biotechnological approaches. Proceedings of International Conference of Animal Biotechnology, Beijing, China. Pp. 155-160.
 
Hong, S. B., Uhm, S. J., Lee, H. Y., Park, C. Y., Gupta, M. K., Chung, B. H., Chung, K.S., & Lee, H. T. (2005). Developmental ability of bovine embryos nuclear transferred with frozen-thawed or cooled donor cells. Asian-Australasian Journal of Animal Sciences, 18(9), 1242-1248.
Crossref
 
Hosseini, S. M., Moulavi, F., Foruzanfar, M., Hajian, M., Abedi, P., Rezazade-Valojerdi, M., Parivar, K., Shahverdi, A. H., & Nasr-Esfahani, M. H. (2008). Effect of donor cell type and gender on the efficiency of in vitro sheep somatic cell cloning. Small Ruminant Research, 78(1-3), 162-168.
Crossref
 
Jauregui, H. O., Hayner, N. T., Driscoll, J. L., Williams-Holland, R., Lipsky, M. H., & Galletti, P. M. (1981). Trypan blue dye uptake and lactate dehydrogenase in adult rat hepatocytes-freshly isolated cells, cell suspensions, and primary monolayer cultures. In vitro, 17(12), 1100-1110.
Crossref
 
Kato, Y., Tani, T., Sotomaru, Y., Kurokawa, K., Kato, J. Y., Doguchi, H., Yasue, H., & Tsunoda, Y. (1998). Eight calves cloned from somatic cells of a single adult. Science, 282(5396), 2095-2098.
Crossref
 
Krausgruber, T., Fortelny, N., Fife-Gernedl, V., Senekowitsch, M., Schuster, L. C., Lercher, A., Nemc, A., Schmidl, C., Rendeiro, A.F., Bergthaler, A., & Bock, C. (2020). Structural cells are key regulators of organ-specific immune responses. Nature, 583(7815), 296-302.
Crossref
 
Kubota, C., Yamakuchi, H., Todoroki, J., Mizoshita, K., Tabara, N., Barber, M., & Yang, X. (2000). Six cloned calves produced from adult fibroblast cells after long-term culture. Proceedings of the National Academy of Sciences, 97(3), 990-995.
Crossref
 
Lee, C. K., & Piedrahita, J. A. (2003). Transgenesis and germ cell engineering in domestic animals. Asian-Australasian Journal of Animal Sciences, 16(6), 910-927.
Crossref
 
Lee, Y. S., Ock, S. A., Cho, S. K., Jeon, B. G., Kang, T. Y., Balasubramanian, S., Choe, S. Y., & Rho, G. J. (2007). Effect of donor cell types and passages on preimplantation development and apoptosis in porcine cloned embryos. Asian-Australasian Journal of Animal Sciences, 20(5), 711-717.
Crossref
 
Li, L. F., Guan, W. J., Li, H., Bai, X. J., & Ma, Y. H. (2009a). Establishment and characterization of the fibroblast line from Silkie Bantam. Asian-Australasian Journal of Animal Sciences, 22(4), 492-499.
Crossref
 
Li, X. C., Yue, H., Li, C. Y., He, X. H., Zhao, Q. J., Ma, Y. H., Guan, W. J., & Ma, J. Z. (2009). Establishment and characterization of a fibroblast cell line derived from Jining Black Grey goat for genetic conservation. Small Ruminant Research, 87(1-3), 17-26.
Crossref
 
Li, L. F., Guan, W. J., Li, H., Zhou, X. Z., Bai, X. J., & Ma, Y. H. (2009b). Establishment and characterization of a fibroblast cell line derived from Texel sheep. Biochemistry and Cell Biology, 87(3): 485-492.
Crossref
 
Louis, K. S., & Siegel, A. C. (2011). Cell viability analysis using trypan blue: Manual and automated methods. In: Stoddart, M. (ed.). Mammalian cell viability. Methods in Molecular Biology, vol 740, pp. 7-12. Humana Press.
Crossref
 
Lu, F., Jiang, J., Li, N., Zhang, S., Sun, H., Luo, C., Wei, Y. & Shi, D. (2011). Effects of recipient oocyte age and interval from fusion to activation on development of buffalo (Bubalus bubalis) nuclear transfer embryos derived from fetal fibroblasts. Theriogenology, 76(5), 967-974.
Crossref
 
Lu, F., Shi, D., Wei, J., Yang, S., & Wei, Y. (2005). Development of embryos reconstructed by interspecies nuclear transfer of adult fibroblasts between buffalo (Bubalus bubalis) and cattle (Bos indicus). Theriogenology, 64(6), 1309-1319.
Crossref
 
Marquis, C. P. (2016). Fundamentals in Biotechnology. In: Doelle, H. W., Roken, S., & Beroric, M. Encylopedia of Life Support System (EOLSS), Mammalian cell culture. Biotechnology, Volume-I.
 
Mestre‐Citrinovitz, A. C., Sestelo, A. J., Ceballos, M. B., Barañao, J. L., & Saragüeta, P. (2016). Isolation of primary fibroblast culture from wildlife: the Panthera onca case to preserve a South American endangered species. Current Protocols in Molecular Biology, 116(1), 128.117.111-128.117.114.
Crossref
 
Moro, L. N., Hiriart, M. I., Buemo, C., Jarazo, J., Sestelo, A., Veraguas, D., Rodriguez-Alvarez, L., & Salamone, D. F. (2015a). Cheetah interspecific SCNT followed by embryo aggregation improves in vitro development but not pluripotent gene expression. Reproduction, 150(1), 1-10.
Crossref
 
Moro, L. N., Jarazo, J., Buemo, C., Hiriart, M. I., Sestelo, A., & Salamone, D. F. (2015b). Tiger, Bengal and domestic cat embryos produced by homospecific and interspecific zona‐free nuclear transfer. Reproduction in Domestic Animals, 50(5), 849-857.
Crossref
 
Oishi, T. (1997). Conservation and evaluation of animal genetic resources. Farming Jpn., 6,18-25.
 
Park, H. S., Jung, S. Y., Kim, T. S., Park, J. K., Moon, T. S., Hong, S. P., Jin, J. I.,Lee, J. S., Lee, J. H., Sohn, S. H., Lee, C. Y., & Moon, Y. S. (2007). Production of cloned Korean native goat (Capra hircus) by somatic cell nuclear transfer. Asian-Australasian Journal of Animal Sciences, 20(4), 487-495.
Crossref
 
Park, M. C., Kim, J. Y., Kim, S. B., Park, Y.S., Park, H.D., Lee, J. H., Oh, D. S., &Kim, J. M. (2009). The effect of cryopreservation on the mouse embryos at various-pronuclear Stages. Asian-Australasian Journal of Animal Science, 22(2), 174-180.
Crossref
 
Powell, A. M., Talbot, N. C., Wells, K. D., Kerr, D. E., Pursel, V. G., & Wall, R. J. (2004). Cell donor influences success of producing cattle by somatic cell nuclear transfer. Biology of Reproduction, 71(1), 210-216.
Crossref
 
Ren, F. L., Li, Y., & Zhang, Y. (2002). In vitro cultivation and freezing of bovine skin fibroblast cells. Scalper Magazine, 28, 8-10.
 
Roux, W. (1885). Beitragzur Entwicklungsmechanik des Embryo. Zeitschrift fur Biologie, 21, 411-526.
 
Ryder, O. A., & Benirschke, K. (1997). The potential use of "cloning" in the conservation effort. Zoo Biology: Published in affiliation with the American Zoo and Aquarium Association, 16(4), 295-300.
Crossref
 
Santos, M. L., Borges, A. A., Neta, L. B. Q., Santos, M. V., Oliveira, M. F., Silva, A. R., & Pereira, A. F. (2016). In vitro culture of somatic cells derived from ear tissue of collared peccary (Pecari tajacu Linnaeus, 1758) in medium with different requirements. Pesquisa Veterinária Brasileira, 36, 1194-1202.
Crossref
 
Siengdee, P., Klinhom, S., Thitaram, C., Nganvongpanit, K. (2018). Isolation and culture of primary adult skin fibroblasts from the Asian elephant (Elephas maximus). PeerJ6: e4302.
Crossref
 
Simon, D. L. (1999). Better decisions in conservation of farm animal genetic resources by use of international sources of information. Quarterly bulletin of the International Association of Agricultural Information Specialists= Bulletin trimestriel de l'Association internationale des spécialistes de l'information agricole.
Crossref
 
Tasripoo, K., Srisakwattana, K., Sophon, S., Nualchuen, W., & Usawang, S. 2007. Cloning of buffalo fibroblast cell from donor of different ages. Buffalo Journal, 23 (2), 141-152.
 
Tasripoo, K., Suthikrai, K., Sophon, S., Jintana, A. R., Nualchuen, W., Usawang, S., Bintvihok, A., Techakumphu, M., &Srisakwattana, K. (2014). First cloned swamp buffalo produced from adult ear fibroblast cell. Animal, 8(7), 1139-1145.
Crossref
 
Tian, X. C., Kubota, C., Enright, B., & Yang, X. (2003). Cloning animals by somatic cell nuclear transfer-biological factors. Reproductive Biology and Endocrinology, 1, Article number 98.
Crossref
 
Vangipuram, M., Ting, D., Kim, S., Diaz, R., & Schüle, B. (2013). Skin punch biopsy explant culture for derivation of primary human fibroblasts. Journal of Visualized Experiments, 77, e3779.
Crossref
 
Wang, T., Li, Z., Zheng, D., Liu, W., Huang, P., Zeng, Z., Xu, C., Wang, B., & Wei, J. (2020). Establishment and characterization of a fibroblast cell line from postmortem skin of an adult Chinese muntjac (Muntiacus reevesi). In Vitro Cellular & Developmental Biology-Animal, 56, 97-102.
Crossref
 
Webb, S. J., Zychowski, G. V., Bauman, S. W., Higgins, B. M., Raudsepp, T., Gollahon, L. S., Wooten, K.J., Cole, J. M., & Godard-Codding, C. (2014). Establishment, characterization, and toxicological application of loggerhead sea turtle (Caretta caretta) primary skin fibroblast cell cultures. Environmental Science and Technology, 48(24), 14728-14737.
Crossref
 
Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J., & Campbell, K. H. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature, 385(6619), 810-813.
Crossref
 
Wu, C. X. (1999). Theory and technique of animal genetic resources conservation: idioplasmic basis for persistant development of animal agriculture in the 21st century. Journal of Yun Nan University (Natural Sciences), 21, 7-10.
 
Xiong, H., He, X., Zhang, W., Li, C., Li, M., Guan, W., & Ma, Y. (2014). Establishment and characterization of a fibroblast line from Duroc. Pakistan Journal of Zoology, 46(2), 363-369.
 
Yun, J. I., Koo, B. S., Yun, S. W., & Lee, C. K. (2008). In vitro development of interspecies somatic cell nuclear transfer embryos derived from murine embryonic fibroblasts and bovine oocytes. Asian-Australasian Journal of Animal Sciences, 21(11), 1665-1672.
Crossref
 
Zhou, X. M., Ma, Y. H., Guan, W. J., &Zhao, D. M. (2004). Establishment and Identification of a Debao Pony Ear Marginal Tissue Fibroblast Cell Line. Asian-Australasian Journal of Animal Science,17(10), 1338-1343.
Crossref