JOURNAL OF AGRICULTURAL SCIENCE AND PRACTICE
Integrity Research Journals

ISSN: 2536-7072
Model: Open Access/Peer Reviewed
DOI: 10.31248/JASP
Start Year: 2016
Email: jasp@integrityresjournals.org


Effect of salinity, humic acid, biozote and vermicompost on soil physicochemical properties and olive plants species

https://doi.org/10.31248/JASP2018.069   |   Article Number: 34EB4ED31   |   Vol.3 (2) - April 2018

Received Date: 02 February 2018   |   Accepted Date: 09 April 2018  |   Published Date: 30 April 2018

Authors:  Muhammad Arshad Ullah , Syeda Sana Aamir , Hussnain Haider , Bilal Adil , Imdad Ali Mahmood , Badar-uz-Zaman and Syed Ishtiaq Hyder

Keywords: Biozote Carolea, Frontoio and Nocellera, olive varieties, humic acid, ionic concentration, soil properties, vermicompost.

The study was carried out at National Agricultural Research Centre (NARC) Islamabad during August, 2017 to October, 2017 to evaluate the impact of salinity plus humic acid, Biozote and Vermicompost on 3 olive varieties (Nocellera, Frontoio and Carolea) on physicochemical properties of soil and plant ionic concentration used in plastic nursery bags of three months olive sprouted cuttings in tunnel under saline conditions. The completely randomized design was applied with three replications. Olive soil salinity was developed artificially with the mixture of different salts at 2.0 dSm-1. Biozote, humic acid, and Vermicompost were applied in the artificially developed soil salinity filled in polythene bags planted three months olive cuttings. Treatments were; humic acid solid mixed with soil at the time of planting, humic acid liquid to the soil at the time of planting, humic acid sprayed to cuttings (after every 10 days), dip cuttings in humic acid at the time of planting. Addition of vermizote in soil at the time of planting, addition of Biozote in soil at the time of planting and dip cutting in biozote at the time of planting. Results showed that salinity negatively affected the uptake of nutrient elements. Physiochemical properties of soil showed significant variations among different treatments when interacted with varieties at P<0.05. This study pointed out the tolerance and sensitivity levels against salinity in three olive varieties at 2.0 dSm-1. Nocellera olive variety is the most tolerant variety in terms of Na uptake as compared to the others. Whereas the Frontoio olive cultivar is the most susceptible olive variety against salinity stresses. As K uptake is concerned, Nocellera is the variety of maximum uptake and Carloea olive variety with the minimum. The results depicted that Nocellera olive variety proved to be the most salinity tolerant variety.

Angelova, V. R., Akova, V. I., Artinova, N. S., & Ivanov, K. I. (2013). The effect of organic amendments on soil chemical characteristics. Bulg. J. Agric. Sci, 19(5), 958-971.
 
Aparicio, A., Urrestarazu, M. & Cordovilla, M. D. P. (2014). Comparative Physiological Analysis of Salinity Effects in Six Olive Genotypes. Hortscience, 49 (7), 901-904.
 
Arancon, N. Q. C., Edwards, A., Lee, S., & Byrne, R. (2006). Effects of humic acids from vermin composts on plant growth. Euro. J. Soil Biol. 42, 65-69.
Crossref
 
Berthomieu, P., Conejero, G., Nublat, A., Brackenbury, W.J., Lambert, C., Uozumi, N., Oiki, S., Yamada, K., Cellier, F., Gosti, F., 2003. Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. EMBO J., 22, 2004-2014.
Crossref
 
Blumwald, E. (2000). Sodium transport and salt tolerance in plants. Curr. Opin. Cell Biol.,12, 431-434.
Crossref
 
Chartzoulakis, K., Loupassaki, M., Bertaki, M., & Androulakis. I. (2002). Effects of NaCl salinity on growth, ion content and CO2 assimilation rate of six olive cultivars. Sci. Hort., 96:235-247.
Crossref
 
Dang, Y. P., Dalal, R. C., Mayer, D. G. (2008). High subsoil chloride concentrations reduce soil water extraction and crop yield on Vertisols in north-eastern Australia. Australian Journal of Agricultural Research, 59, 321-330.
Crossref
 
Dang, Y.P., Dalal, R.C., Buck, S.R., Harms, B., Kelly, R., Hochman, Z., Schwenke, G. D., Biggs, A. J. W., Ferguson, N. J., Norrish, S., & Routley, R. (2010). Diagnosis, extent, impacts and management of subsoil constraints in the northern grains cropping region of Australia. Soil Research, 48(2), 105-119.
Crossref
 
Davenport, R. J., Munoz-Mayor, A., Jha, D., Essah, P. A., Rus, A., Tester, M. (2007). The Na+ transporter AtHKT1;1 controls retrieval of Na+ from the xylem in Arabidopsis. Plant Cell Environ., 30, 497-507.
Crossref
 
Defline, S., Tognetti, R., Desiderio, E., Alvino, A. (2005). Effect of foliar application of N and humic acids on growth and yield of durum wheat. Agronomy for Sustainable Development, 25: 183-191.
Crossref
 
Guo, Y., Halfter, U., Ishitani, M., & Zhu, J. K. (2001). Molecular characterization of functional domains in the protein kinase SOS2that is required for plant salt tolerance. Plant Cell, 13, 1383-1400.
Crossref
 
Guo, Y., Qiu, Q. S., Quintero, F. J., Pardo, J. M., Ohta, M., Zhang, C., Schumaker, K. S., & Zhu, J. K. (2004). Transgenic evaluation ofactivated mutant alleles of SOS2 reveals a critical requirement for its kinase activity and C-terminal regulatory domain for salt tolerance in Arabidopsis thaliana. Plant Cell, 16, 435-449.
Crossref
 
Halfter, U., Ishitani M., & Zhu, J. K. (2000). The Arabidopsis SOS2 protein kinase physically interacts with and is activated by thecalcium-binding protein SOS3. Proc. Natl. Acad. Sci., 97, 3735-3740.
Crossref
 
Hauser, F., & Horie, T. (2010). A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress. Plant Cell Environ., 33, 552–565.
Crossref
 
Horie, T., Karahara, I., & Katsuhara, M. (2012). Salinity tolerance mechanisms in glycophytes: An overview with the central focus on rice plants. Rice, 5(1), 11.
Crossref
 
Horie, T., Yoshida, K., Nakayama, H., Yamada, K., Oiki, S., & Shinmyo, A. (2001). Two types of HKT transporters with differentproperties of Na+ and K+ transport in Oryza sativa. Plant J., 27, 129-138.
Crossref
 
Ishitani, M., Liu, J., Halfter, U., Kim, C. S., Shi, W., & Zhu, J. K. (2000). SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding. Plant Cell, 12, 1667-1678.
Crossref
 
Khan, A. G., Kuek, C., Chandhry, T. M., Khoo, C. S. & Hayes, W. J. (2000). Role of plants, mycorrhizae and phytochelatorsin heavy metal contaminated land remediation. Chemosphere, 41, 197-207.
Crossref
 
Laila, K, Hee, J. P., Dae-Jin, Y., Jong-Rok, J., Min, G. K., Joon-Yung, C., & Woe-Yeon, K. (2017). Humic acid confers high-affinity k+ transporter 1-mediated salinity stress tolerance in Arabidopsis. Mol. Cells, 40(12), 966-975.
 
Liang, Y., Si, J., Nikolic, M., Peng, Y., & Chen, W. (2005). Organic manure stimulates biological activity and barley growth in soil subject to secondary salinization. Soil Biol. Biochem, 37(6), 1185-1195
Crossref
 
Liu, J., Ishitani, M., Halfter, U., Kim, C. S., & Zhu, J. K. (2000). The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proceedings of the National Academy of Sciences, 97, 3730-3734.
Crossref
 
Marketa, J., Borivoj, K., Jozef, K., Petr, B., & Josef, S. (2016). Humic acid protects barley against salinity. Acta. Physiol. Plant. 38, 161.
Crossref
 
Masciandaro, G., Ceccanti, B., Ronchi, V., Benedicto, S., & Howard, L. (2002). Humic substances to reduce salt effect on plant germination and growth. Comm. Soil Sci. Plant Anal., 33, 365-378.
Crossref
 
Mäser, P., Eckelman, B., Vaidyanathan, R., Horie, T., Fairbairn, D. J., Kubo, M., Yamagami, M., Yamaguchi, K., Nishimura, M., Uozumi, N. (2002a). Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+ transporter AtHKT1. FEBS letters, 531(2), 157-161.
Crossref
 
Mäser, P., Hosoo, Y., Goshima, S., Horie, T., Eckelman, B., Yamada, K., Yoshida, K., Bakker, E. P., Shinmyo, A., Oiki, S. & Schroeder, J. I. (2002b). Glycine residues in potassium channel-like selectivity filters determine potassium selectivity in four-loop-per-subunit HKT transporters from plants. Proceedings of the National Academy of Sciences, 99(9), 6428-6433.
Crossref
 
Møller, I. S., Gilliham, M., Jha, D., Mayo, G. M., Roy, S, J., Coates, J. C., Haseloff, J., & Tester, M. 2009. Shoot Na+ exclusion and increased salinity tolerance engineered by cell type-specific alteration of Na+ transport in Arabidopsis. Plant Cell, 21, 2163-2178.
Crossref
 
Montgomery, D. C. (2001). Design and Analysis of Experiments. 5th ed., Wiley, New York.
 
Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol., 59, 651-681.
Crossref
 
Nardi, S., Pizzeghello, D., Muscolo, A., & Vianello, A. (2002). Physiological effects of humic substances on higher plant. Soil Biol. Biochem., 34, 1527-1536.
Crossref
 
Orsi, M. 2014. Molecular dynamics simulation of humicsubstances. Chem. Biol. Technol. Agr., 1,10.
Crossref
 
Pardo, J. M., Cubero, B., Leidi, E. O., & Quintero, F. J. (2006). Alkali cation exchangers: roles in cellular homeostasis and stress tolerance. J. Exp. Bot., 57, 1181-1199.
Crossref
 
Park, H. J., Kim, W. Y., Yun, D. J. (2016). A new insight of salt stress signaling in plant. Mol. Cells, 39(6), 447-459.
Crossref
 
Qiu, Q. S., Guo, Y., Dietrich, M. A., Schumaker, K. S., & Zhu, J. K. (2002). Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proceedings of the National Academy of Sciences, 99, 8436-8441.
Crossref
 
Quaggiotti, S., Ruperti, B., Pizzeghello, D., Francioso, O., Tugnoli, V., & Nardi, S. (2004). Effect of low molecular size humic substances on the expression of genes involved in nitrate transport and reduction in maize (Zea mays L.). J. Exp. Bot., 55, 803-813.
Crossref
 
Ren, Z. H., Gao, J. P., Li, L. G., Cai, X. L., Huang, W., Chao, D. Y., Zhu, M. Z., Wang, Z. Y., Luan, S., and Lin, H. X. (2005). A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat. Genet., 37, 1141-1146.
Crossref
 
Rengasamy, P. (2002). Transient salinity and subsoil constraints to dry land farming in Australian sodic soils: an overview. Australian Journal of Experimental Agriculture, 42, 351–361.
Crossref
 
Ryan, J., Estefan, G., & Rashid, A. (2001). Soil and Plant Analysis Laboratory Manual. International Center for Agricultural Research in the Dry Areas (ICARDA), Islamabad, Pakistan. 172p.
 
Sangeetha, M., Singaram, P., & Devi, R. D. (2006, July). Effect of lignite humic acid and fertilizers on the yield of onion and nutrient availability. In Proceedings of 18th World Congress of Soil Science July (pp. 9-15).
 
Selim, E. M., Mosa, A. A., & El-Ghamry, A. M. (2009). Evaluation of humic substances fertigation through surface and subsurface drip irrigation systems on potato grown under Egyptian sandy soil conditions. Agr. Water Manage., 96, 1218-1222.
Crossref
 
Sparks, D. L., Carski, T. H., Fendorf, S. E., Toner, C. V. (1996). Kinetic methods and measurements. Pp. 1275-1307. In D.L. Sparks (ed.) Methods of soil analysis: Chemical methods. Soil Science Society of America, Madison, WI.
Crossref
 
Sunarpi, H. T., Horie, T., Motoda, J., Kubo, M., Yang, H., Yoda, K., Horie, R., Chan, W. Y., Leung, H. Y., Hattori, K., Konomi, M., Osumi, M. (2005). Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+ unloading from xylem vessels to xylem parenchyma cells. Plant J., 44, 928-938.
Crossref
 
Tan, K. H. (2003). Humic matter in soil and the environment. Marcel Dekker, New York.
Crossref
 
Tavakkoli, E., Pichu, R., & McDonald, G. K. (2010). High concentrations of Na+ and Cl– ions in soil solution havesimultaneous detrimental effects on growth of fababeanunder salinity stress. Journal of Experimental Botany, 61(15), 4449-4459.
Crossref
 
Trevisan, S., Pizzeghello, D., Ruperti, B., Francioso, O., Sassi, A., Palme, K., Quaggiotti, S., & Nardi, S. 2010. Humic substances induce lateral root formation and expression of the early auxin responsive IAA19 gene and DR5 synthetic element in Arabidopsis. Plant Biol., 12, 604-614.
 
Uozumi, N., Kim, E. J., Rubio, F., Yamaguchi, T., Muto, S., Tsuboi, A., Bakker, E. P., Nakamura, T., & Schroeder, J. I. (2000). The Arabidopsis HKT1 gene homolog mediates inward Na+ currents in Xenopus laevis oocytes and Na+ uptake in Saccharomyces cerevisiae. Plant physiology, 122(4), 1249-1260.
Crossref
 
Wang, S., & Mulligan, C. N. (2009). Enhanced mobilization of arsenic and heavy metals from mine tailings by humic acid. Chemosphere, 74, 274-279.
Crossref
 
Weissbein, S., Wiesman, Z., Ephrath, Y., & Silberbush, M. (2008). Vegetative and reproductive response of olive cultivars to moderate saline water irrigation. Hort. Science, 43,320-327.
 
Xue, S., Yao, X., Luo, W., Jha, D., Tester, M., Horie, T., & Schroeder, J. I. (2011). AtHKT1;1 mediatenernstian sodium channel transport properties in Arabidopsis root stelar cells. PLoS One, 6, e24725.
Crossref
 
Yamaguchi, T., & Blumwald E. (2005). Developing salt tolerant crop plants: Challenges and opportunities. Trends Plant Sci., 10, 615-620.
Crossref