ISSN: 2536-7072
Model: Open Access/Peer Reviewed
DOI: 10.31248/JASP
Start Year: 2016
Email: jasp@integrityresjournals.org
https://doi.org/10.31248/JASP2018.069 | Article Number: 34EB4ED31 | Vol.3 (2) - April 2018
Received Date: 02 February 2018 | Accepted Date: 09 April 2018 | Published Date: 30 April 2018
Authors: Muhammad Arshad Ullah , Syeda Sana Aamir , Hussnain Haider , Bilal Adil , Imdad Ali Mahmood , Badar-uz-Zaman and Syed Ishtiaq Hyder
Keywords: Biozote Carolea, Frontoio and Nocellera, olive varieties, humic acid, ionic concentration, soil properties, vermicompost.
The study was carried out at National Agricultural Research Centre (NARC) Islamabad during August, 2017 to October, 2017 to evaluate the impact of salinity plus humic acid, Biozote and Vermicompost on 3 olive varieties (Nocellera, Frontoio and Carolea) on physicochemical properties of soil and plant ionic concentration used in plastic nursery bags of three months olive sprouted cuttings in tunnel under saline conditions. The completely randomized design was applied with three replications. Olive soil salinity was developed artificially with the mixture of different salts at 2.0 dSm-1. Biozote, humic acid, and Vermicompost were applied in the artificially developed soil salinity filled in polythene bags planted three months olive cuttings. Treatments were; humic acid solid mixed with soil at the time of planting, humic acid liquid to the soil at the time of planting, humic acid sprayed to cuttings (after every 10 days), dip cuttings in humic acid at the time of planting. Addition of vermizote in soil at the time of planting, addition of Biozote in soil at the time of planting and dip cutting in biozote at the time of planting. Results showed that salinity negatively affected the uptake of nutrient elements. Physiochemical properties of soil showed significant variations among different treatments when interacted with varieties at P<0.05. This study pointed out the tolerance and sensitivity levels against salinity in three olive varieties at 2.0 dSm-1. Nocellera olive variety is the most tolerant variety in terms of Na uptake as compared to the others. Whereas the Frontoio olive cultivar is the most susceptible olive variety against salinity stresses. As K uptake is concerned, Nocellera is the variety of maximum uptake and Carloea olive variety with the minimum. The results depicted that Nocellera olive variety proved to be the most salinity tolerant variety.
Angelova, V. R., Akova, V. I., Artinova, N. S., & Ivanov, K. I. (2013). The effect of organic amendments on soil chemical characteristics. Bulg. J. Agric. Sci, 19(5), 958-971. | ||||
Aparicio, A., Urrestarazu, M. & Cordovilla, M. D. P. (2014). Comparative Physiological Analysis of Salinity Effects in Six Olive Genotypes. Hortscience, 49 (7), 901-904. | ||||
Arancon, N. Q. C., Edwards, A., Lee, S., & Byrne, R. (2006). Effects of humic acids from vermin composts on plant growth. Euro. J. Soil Biol. 42, 65-69. Crossref |
||||
Berthomieu, P., Conejero, G., Nublat, A., Brackenbury, W.J., Lambert, C., Uozumi, N., Oiki, S., Yamada, K., Cellier, F., Gosti, F., 2003. Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. EMBO J., 22, 2004-2014. Crossref |
||||
Blumwald, E. (2000). Sodium transport and salt tolerance in plants. Curr. Opin. Cell Biol.,12, 431-434. Crossref |
||||
Chartzoulakis, K., Loupassaki, M., Bertaki, M., & Androulakis. I. (2002). Effects of NaCl salinity on growth, ion content and CO2 assimilation rate of six olive cultivars. Sci. Hort., 96:235-247. Crossref |
||||
Dang, Y. P., Dalal, R. C., Mayer, D. G. (2008). High subsoil chloride concentrations reduce soil water extraction and crop yield on Vertisols in north-eastern Australia. Australian Journal of Agricultural Research, 59, 321-330. Crossref |
||||
Dang, Y.P., Dalal, R.C., Buck, S.R., Harms, B., Kelly, R., Hochman, Z., Schwenke, G. D., Biggs, A. J. W., Ferguson, N. J., Norrish, S., & Routley, R. (2010). Diagnosis, extent, impacts and management of subsoil constraints in the northern grains cropping region of Australia. Soil Research, 48(2), 105-119. Crossref |
||||
Davenport, R. J., Munoz-Mayor, A., Jha, D., Essah, P. A., Rus, A., Tester, M. (2007). The Na+ transporter AtHKT1;1 controls retrieval of Na+ from the xylem in Arabidopsis. Plant Cell Environ., 30, 497-507. Crossref |
||||
Defline, S., Tognetti, R., Desiderio, E., Alvino, A. (2005). Effect of foliar application of N and humic acids on growth and yield of durum wheat. Agronomy for Sustainable Development, 25: 183-191. Crossref |
||||
Guo, Y., Halfter, U., Ishitani, M., & Zhu, J. K. (2001). Molecular characterization of functional domains in the protein kinase SOS2that is required for plant salt tolerance. Plant Cell, 13, 1383-1400. Crossref |
||||
Guo, Y., Qiu, Q. S., Quintero, F. J., Pardo, J. M., Ohta, M., Zhang, C., Schumaker, K. S., & Zhu, J. K. (2004). Transgenic evaluation ofactivated mutant alleles of SOS2 reveals a critical requirement for its kinase activity and C-terminal regulatory domain for salt tolerance in Arabidopsis thaliana. Plant Cell, 16, 435-449. Crossref |
||||
Halfter, U., Ishitani M., & Zhu, J. K. (2000). The Arabidopsis SOS2 protein kinase physically interacts with and is activated by thecalcium-binding protein SOS3. Proc. Natl. Acad. Sci., 97, 3735-3740. Crossref |
||||
Hauser, F., & Horie, T. (2010). A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress. Plant Cell Environ., 33, 552–565. Crossref |
||||
Horie, T., Karahara, I., & Katsuhara, M. (2012). Salinity tolerance mechanisms in glycophytes: An overview with the central focus on rice plants. Rice, 5(1), 11. Crossref |
||||
Horie, T., Yoshida, K., Nakayama, H., Yamada, K., Oiki, S., & Shinmyo, A. (2001). Two types of HKT transporters with differentproperties of Na+ and K+ transport in Oryza sativa. Plant J., 27, 129-138. Crossref |
||||
Ishitani, M., Liu, J., Halfter, U., Kim, C. S., Shi, W., & Zhu, J. K. (2000). SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding. Plant Cell, 12, 1667-1678. Crossref |
||||
Khan, A. G., Kuek, C., Chandhry, T. M., Khoo, C. S. & Hayes, W. J. (2000). Role of plants, mycorrhizae and phytochelatorsin heavy metal contaminated land remediation. Chemosphere, 41, 197-207. Crossref |
||||
Laila, K, Hee, J. P., Dae-Jin, Y., Jong-Rok, J., Min, G. K., Joon-Yung, C., & Woe-Yeon, K. (2017). Humic acid confers high-affinity k+ transporter 1-mediated salinity stress tolerance in Arabidopsis. Mol. Cells, 40(12), 966-975. | ||||
Liang, Y., Si, J., Nikolic, M., Peng, Y., & Chen, W. (2005). Organic manure stimulates biological activity and barley growth in soil subject to secondary salinization. Soil Biol. Biochem, 37(6), 1185-1195 Crossref |
||||
Liu, J., Ishitani, M., Halfter, U., Kim, C. S., & Zhu, J. K. (2000). The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proceedings of the National Academy of Sciences, 97, 3730-3734. Crossref |
||||
Marketa, J., Borivoj, K., Jozef, K., Petr, B., & Josef, S. (2016). Humic acid protects barley against salinity. Acta. Physiol. Plant. 38, 161. Crossref |
||||
Masciandaro, G., Ceccanti, B., Ronchi, V., Benedicto, S., & Howard, L. (2002). Humic substances to reduce salt effect on plant germination and growth. Comm. Soil Sci. Plant Anal., 33, 365-378. Crossref |
||||
Mäser, P., Eckelman, B., Vaidyanathan, R., Horie, T., Fairbairn, D. J., Kubo, M., Yamagami, M., Yamaguchi, K., Nishimura, M., Uozumi, N. (2002a). Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+ transporter AtHKT1. FEBS letters, 531(2), 157-161. Crossref |
||||
Mäser, P., Hosoo, Y., Goshima, S., Horie, T., Eckelman, B., Yamada, K., Yoshida, K., Bakker, E. P., Shinmyo, A., Oiki, S. & Schroeder, J. I. (2002b). Glycine residues in potassium channel-like selectivity filters determine potassium selectivity in four-loop-per-subunit HKT transporters from plants. Proceedings of the National Academy of Sciences, 99(9), 6428-6433. Crossref |
||||
Møller, I. S., Gilliham, M., Jha, D., Mayo, G. M., Roy, S, J., Coates, J. C., Haseloff, J., & Tester, M. 2009. Shoot Na+ exclusion and increased salinity tolerance engineered by cell type-specific alteration of Na+ transport in Arabidopsis. Plant Cell, 21, 2163-2178. Crossref |
||||
Montgomery, D. C. (2001). Design and Analysis of Experiments. 5th ed., Wiley, New York. | ||||
Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol., 59, 651-681. Crossref |
||||
Nardi, S., Pizzeghello, D., Muscolo, A., & Vianello, A. (2002). Physiological effects of humic substances on higher plant. Soil Biol. Biochem., 34, 1527-1536. Crossref |
||||
Orsi, M. 2014. Molecular dynamics simulation of humicsubstances. Chem. Biol. Technol. Agr., 1,10. Crossref |
||||
Pardo, J. M., Cubero, B., Leidi, E. O., & Quintero, F. J. (2006). Alkali cation exchangers: roles in cellular homeostasis and stress tolerance. J. Exp. Bot., 57, 1181-1199. Crossref |
||||
Park, H. J., Kim, W. Y., Yun, D. J. (2016). A new insight of salt stress signaling in plant. Mol. Cells, 39(6), 447-459. Crossref |
||||
Qiu, Q. S., Guo, Y., Dietrich, M. A., Schumaker, K. S., & Zhu, J. K. (2002). Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proceedings of the National Academy of Sciences, 99, 8436-8441. Crossref |
||||
Quaggiotti, S., Ruperti, B., Pizzeghello, D., Francioso, O., Tugnoli, V., & Nardi, S. (2004). Effect of low molecular size humic substances on the expression of genes involved in nitrate transport and reduction in maize (Zea mays L.). J. Exp. Bot., 55, 803-813. Crossref |
||||
Ren, Z. H., Gao, J. P., Li, L. G., Cai, X. L., Huang, W., Chao, D. Y., Zhu, M. Z., Wang, Z. Y., Luan, S., and Lin, H. X. (2005). A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat. Genet., 37, 1141-1146. Crossref |
||||
Rengasamy, P. (2002). Transient salinity and subsoil constraints to dry land farming in Australian sodic soils: an overview. Australian Journal of Experimental Agriculture, 42, 351–361. Crossref |
||||
Ryan, J., Estefan, G., & Rashid, A. (2001). Soil and Plant Analysis Laboratory Manual. International Center for Agricultural Research in the Dry Areas (ICARDA), Islamabad, Pakistan. 172p. | ||||
Sangeetha, M., Singaram, P., & Devi, R. D. (2006, July). Effect of lignite humic acid and fertilizers on the yield of onion and nutrient availability. In Proceedings of 18th World Congress of Soil Science July (pp. 9-15). | ||||
Selim, E. M., Mosa, A. A., & El-Ghamry, A. M. (2009). Evaluation of humic substances fertigation through surface and subsurface drip irrigation systems on potato grown under Egyptian sandy soil conditions. Agr. Water Manage., 96, 1218-1222. Crossref |
||||
Sparks, D. L., Carski, T. H., Fendorf, S. E., Toner, C. V. (1996). Kinetic methods and measurements. Pp. 1275-1307. In D.L. Sparks (ed.) Methods of soil analysis: Chemical methods. Soil Science Society of America, Madison, WI. Crossref |
||||
Sunarpi, H. T., Horie, T., Motoda, J., Kubo, M., Yang, H., Yoda, K., Horie, R., Chan, W. Y., Leung, H. Y., Hattori, K., Konomi, M., Osumi, M. (2005). Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+ unloading from xylem vessels to xylem parenchyma cells. Plant J., 44, 928-938. Crossref |
||||
Tan, K. H. (2003). Humic matter in soil and the environment. Marcel Dekker, New York. Crossref |
||||
Tavakkoli, E., Pichu, R., & McDonald, G. K. (2010). High concentrations of Na+ and Cl– ions in soil solution havesimultaneous detrimental effects on growth of fababeanunder salinity stress. Journal of Experimental Botany, 61(15), 4449-4459. Crossref |
||||
Trevisan, S., Pizzeghello, D., Ruperti, B., Francioso, O., Sassi, A., Palme, K., Quaggiotti, S., & Nardi, S. 2010. Humic substances induce lateral root formation and expression of the early auxin responsive IAA19 gene and DR5 synthetic element in Arabidopsis. Plant Biol., 12, 604-614. | ||||
Uozumi, N., Kim, E. J., Rubio, F., Yamaguchi, T., Muto, S., Tsuboi, A., Bakker, E. P., Nakamura, T., & Schroeder, J. I. (2000). The Arabidopsis HKT1 gene homolog mediates inward Na+ currents in Xenopus laevis oocytes and Na+ uptake in Saccharomyces cerevisiae. Plant physiology, 122(4), 1249-1260. Crossref |
||||
Wang, S., & Mulligan, C. N. (2009). Enhanced mobilization of arsenic and heavy metals from mine tailings by humic acid. Chemosphere, 74, 274-279. Crossref |
||||
Weissbein, S., Wiesman, Z., Ephrath, Y., & Silberbush, M. (2008). Vegetative and reproductive response of olive cultivars to moderate saline water irrigation. Hort. Science, 43,320-327. | ||||
Xue, S., Yao, X., Luo, W., Jha, D., Tester, M., Horie, T., & Schroeder, J. I. (2011). AtHKT1;1 mediatenernstian sodium channel transport properties in Arabidopsis root stelar cells. PLoS One, 6, e24725. Crossref |
||||
Yamaguchi, T., & Blumwald E. (2005). Developing salt tolerant crop plants: Challenges and opportunities. Trends Plant Sci., 10, 615-620. Crossref |