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ABSTRACT: Semi-Markov model in discrete state and time to study the trajection among the various defined HIV/AIDs 
stages has been presented in this paper. The model was used to determine the staging of HIV- infected clients reported 
at heart-to-heart clinic of General Hospital Minna, Niger State, Nigeria for a period of 10 years. The result shows that there 
is no transition from asymptomatic stage of HIV to late/advance AIDs such that φ14 (n) = 0; which led to gradual increment 

in the graphs of interval transition probabilities for all n ∈ N.The study shows that there are some increments in the 
transition probabilities from stages 2, 3 and 4 to stage 1 from about 0.05745, 0.01055 and 0.00379 in the first month (n = 
1) to about 0.37163, 0.17821 and 0.05862 in the forty four months (n = 44) and in the forty five months (n = 45) respectively. 
From the virtual transition probabilities, the graph is gradually decreasing after forty-five (45) months. The result show that 
φ11 (n), φ22 (n), φ33 (n) and φ44 (n)attained the values of about 0.56516, 0.50353, 0.53343 and 0.65623 respectively for 
the first few months or years. The percentage decrease is about 37.1%, 17.8% for stages 2, 3 in forty-four months and 
5.8% for stage 4 in forty-five month duration. However, client’s transitions dropped slowly and attain stability of stage at 
infinity. In compliance to the medical view, all HIV-naïve patients transit to AIDs stage especially when therapeutic 
intervention is lacking. The model established in this study could assist the Medical Personnels’ (MP), Health Care 
Providers (HCP), Epidemiologists, Medical Statisticians and other funding organizations to plan for the treatment, tracking 
and intervention for the ever increasing scourge of HIV/AIDs. 
 
Keywords: Discrete time, HIV-naives, holding time, interval transition probability, semi-Markov process, waiting time. 

 
 
INTRODUCTION  
 
With the pandemic spread of AIDs, a universally 
applicable staging system for HIV infection and disease 
is needed. World Health Organization (WHO) staging 
system solely depends on clinical investigations as they 
manifest on HIV-naïve individuals; before staging them 
into any of WHO four staging thresholds (stage 1, 2, 3 
and 4). In Nigeria and other developing nations, it is 
WHO staging system that is in place because it is easier 
to implement. However, with the availability of FACS 
machine used for CD4 counts in most settings, clinicians 

encourage the counseled and tested HIV-naïves to go for 
CD4 count before staging. This clearly indicates strong 
inclination to United States Centre for Disease Control 
(US-CDC) approach. It could be the surer method 
because machine measuring is involved. The CDC 
defined a set of guidelines and recommendations for 
HIV-infected adolescents and adults on the basis of 
clinical conditions associated with the HIV infection and 
CD4+ T-lymphocyte counts (CDC, 1997). Kay (1986) 
reported  in  cancerology  that,  disease  dynamic can be  
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defined through various states: life without diseases, 
appearance of symptoms, mastitis and eventual death.  

Chronic diseases are always characterized by their 
long duration and generally their slow progression. 
Gillaizeau et al. (2014) asserted that many chronic and 
non-chronic diseases, except few exhibit clinical events 
which are stochastic in nature. These events may denote 
disease incidences, progression, relapse, remission, 
recovery etc. The biomedical dynamic processes can be 
stationary, progressive or non-progressive with respect-
tive to the adopted medical interventions and time index. 
Stochastic processes entails the trajectories within and 
among the various states within time t . The changes and 

duration among the diseased states are often unknown. 
Stochastic modeling then becomes imperative to model 
such dynamic process in order to understand the 
underlying mechanism inherent in disease progression.  

Welte et al. (2006) showed that a semi-Markov process 
with sojourn times given as a general lifetime distribution 
can be approximated by a conventional Markov process 
with exponentially distributed sojourn times. This means 
that the general lifetime distribution is replaced by a sum 
of exponentially distributed times. One way to estimate 
the general lifetime distribution in the semi-Markov model 
is the use of expert opinion. Basta et al. (2008) used a 
cross sectional self-report data collected from 208 HIV 
sero-positive individual to determine the accuracy of 
Transtheoretical model (TTM) constructs to predict the 
stages of change for exercise behaviors in individual 
living with HIV/ AIDS. They discovered based on their 
sample that predictive discriminant analysis classified 
HIV- naive individuals into the correct stages 
substantially better than chance alone except that no one 
was accurately predicted in one of stages out of four.  

Cox (1972) asserted that Markov models are widely 
used in medicine, particularly in the study of chronic 
diseases, extending classical survival models to the 
analysis of multi-state processes. In literature, 
conventional survival analysis has been used as a gold 
standard in modeling time to single event. Here, one 
terminal event may be onset of diseases or death. In 
these situations, time to event data may incorporate the 
comparison of hazard rates, intensities or survival 
function between states. Laird et al. (2013) asserted that, 
the natural history of disease can be modeled using a 
variety of approaches that fall under the general 
framework of multi-state modes, including Markov 
processes, non-homogenous Markov processes, semi-
Markov processes and hidden Markov processes. 
However, in order to model the complex and stochastic 
duration-dependent processes usually encountered in 
epidemiology and biomedicine; the rigid Markovian 
assumption may be unrealistic and has to be relaxed. In 
this paper, semi-Markov model in continuous state and 
time was used to study the transition and prediction of 
HIV/AIDs naïve patients in order to improve the 
surveillance of HIV/AIDS management. 

 
 
 
 
MATERIALS AND METHODS 
 
Study area and data source 
 
The data used in this paper work, were collected at the 
heart–to-heart clinic of General Hospital Minna, Niger 
State, Nigeria. It is WHO staging system currently in 
place in Nigeria because of easier implementation. 
However, with the availability of FACS machine used for 
CD4 counts in most settings whereby clinicians 
encourage the counseled and tested HIV-naïves to go for 
CD4 counts before staging. This clearly indicates strong 
inclination to CDC approach. It could be the surer method 
because machine measuring is involved. 
 
 
Semi-Markov model 
 
Semi-Markov process is a stochastic process in which 
changes of state occur according to a Markov chain and 
for which the time interval between two successive 
transitions is a random variable of interest whose 
distribution may depend on the present state from which 
the transition takes place (Bellman, 1957). 
 
 
Model formulation 
 
The transition of HIV/AIDs staging was modelled 
according to US-CDC staging threshold and stage the 
HIV/AIDs-naive clients into four stages using the 
principle of Markov chain. The stages was defined as 
follows: 

 
Stage 1: ≥ CD4 500 
Stage 2: CD4 350 – CD4 499 
Stage 3: CD4 200 – CD4 349 
Stage 4: < CD4 200 

 
It was observed that the stages 1, 2 and 3 communicates 
while stage 1 and stage 4 are transients, and all possible 
transitions of the process are made between the stages 
1, 2, 3, 4 (Figure 1). We would like a transition to occur 
at a time the duration of stay in a stage is completed, 
even if the new stage is the same as the old. Such 
transitions are called virtual transition and are 
represented by loops in the transition diagram. 

From the Figure 1, we record the transition probability 

matrix P  for the process as shown in equation 1. 
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Figure 1. The transition diagram for the US-CDC 

staging criterion based on CD4 counts. 
 
 
 

The semi-Markov process technique was used to 
analyses the process with the above set of stage. The 
transitions can be readily identified from the transition 

probability matrix P . To study this process, the 
probabilistic nature of the transition was specified.  In 
addition, think of this process as a process whose 
successive stage occupancies are governed by the 
transition probabilities of a Markov chains, but whose 
stay in any stage is described by a random variable that 
depends on the stage to which the next transition is 
made. 
 
 
Holding time and waiting time 
 

Let  
ijP  be the probability that the HIV-naïve client that 

is in stage i  on its last transition will enter stage j on its 

next transition 4,3,2,1, ji . The transition probabilities 

must satisfy the following: 
 

4

1

0

1

ij

ij

j

p

p





  1, 2,3, 4.ij     (2) 

 

Whenever the HIV-naïve client enters stage i  it remains 

there for a time ijT  in stage i  before making a transition 

to stage j . ijT is called the holding time in state i .  The 

holding times are positive integer valued random 
variables each governed by a probability distribution 

function    ijf     called    the   holding    time   distribution  
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function for a transition from stage i  to stage j  (Howard 

1971). 
 

Thus,    mfmTP ijij  4,3,2,1, ji                   (3) 

 

It was assumed that the means ij of all holding time 

distribution are finite and that all holding times are at least 

one month in length. That is,   00 ijf . 

 
To completely describe the semi-Markov process, the 
holding time distribution functions in addition to the 
transition probabilities must be specified. 
 

For a fixed value of i , ijT  is the same for each value of

j , ( 4,3,2,1, ji ). 

 

Let  ijF   be the probability distribution of ijT  
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And  ijF


 be the complementary probability 

distribution of ijT . 
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Suppose the HIV-naïve client enters stage i . Let iY   be 

the time it spent in stage i  before moving out of the 

stage i . Then iY  is called the waiting time in state i .  

 

Let  
i

W  be the probability distribution function of Yi 

 

Then,      mfpnYpmW
ij
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The probability distribution  
i

W  and the 

complementary probability distribution  iW


  for the 

waiting times are given as follows: 
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Figure 1. The transition diagram for the US-CDC staging criterion based on CD4 counts. 
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Interval transition probability in discrete time 
 

 nij  was defined to be the probability that the condition 

of HIV-naïve client will be in stage j  in day n   given that 

the client entered stage i  in month zero. This is called 

the interval transition probability from stage i  to stage j  

in the interval  n,0 . Then, 
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ij
{

1   𝑖 = 𝑗
0      𝑖 ≠ 𝑗

4,3,2,1, ji ....4,3,2,1n
       (14) 

 

This is the interval transition probability from stage i  to 

stage j in the interval  n,0  

 
 

Application 
 
Heart-to-Heart popularly known as VCT/H2H clinic at 
General Hospital Minna is one of the comprehensive 
HIV/AIDs referral site. The clinic is responsible for data 
collation on HIV/AIDs clients of General Hospital Minna 
and other three feeder sites within Minna and its 
environs. The study was conducted on the available data 
for the period of ten (10) years i.e from July 2009 to 
February 2019. Out of over thousands patients files, 219 
randomly selected ART-naïve HIV-seropositive patients 
were included at various stages of diseases progression 
based on the US-CDC staging system that have 
substantial complete retrospective follow-up data on 
CD4 counts. The reported data is summarized in Table 
1, 2 and 3. 

The transition probability matrix of the Table 2 is 
presented as: 

 
 
 
 
Table 1. A summary of the HIV/AIDs-naïve patients according 

to CDC staging criterion from 2009-2019. 
 

Class interval (MW) Stages Frequency 

≥ 500 1 71 
350-499 2 40 
200-349 3 57 
>200            4 51 
Total  219 

 
 
 

Table 2. The transition count matrix for the CDC stages among 

HIV/AIDS-naive from 2009 – 2019.  
 

 Stage 1 Stage 2 Stage 3 Stage 4 Total  

Stage 1 41 7 5 0 53 

Stage 2 13 19 4 3 39 

Stage 3 13 10 31 11 65           

Stage 4 4 4 17 37 62 

Grand total     219 
 
 
 

Table 3. Mean holding time in the stages. 
 

Stage Mean holding time 

Stage 1 13 

Stage 2 10 

Stage 3 17 

Stage 4 16 
 
 
 





















5968.02742.00645.00645.0

1693.06419.01538.02000.0

.0769.01026.04872.03333.0

00943.01321.07736.0

P

      
 
 
Exponential holding time in stages (discrete time) 
 
Suppose that the holding times in each stage before 
making a transition to another stage follows the 

exponential distribution with parameter . This implies 

that the mean holding time in each stage is 
1 (in 

months). The mean holding time in each stage is shown 
in Table 3. The table shows that HIV/AIDs clients 
recorded the highest mean holding time in stage 3 then 
followed by stage 4, stage 1 and stage 2 respectively. 
 
 
RESULTS 
 
Table 4 presents the values of interval transition 
probabilities  in  continuous time from stage 1 to stage 2, 
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Table 4. Interval transition probabilities for 𝜑12(𝑛),  𝜑13(𝑛),  𝜑21(𝑛),  𝜑23(𝑛), 𝜑24(𝑛) 𝑎𝑛𝑑 𝜑31(𝑛). 
 

n 𝝋𝟏𝟐(𝒏) 𝝋𝟏𝟑(𝒏) 𝝋𝟐𝟏(𝒏)  𝝋𝟐𝟑(𝒏) 𝝋𝟐𝟒(𝒏) 𝝋𝟑𝟏(𝒏) 

1 0.01812 0.01293 0.05745 0.01768 0.00696 0.01055 

2 0.02618 0.01869 0.08214 0.02529 0.01325 0.02054 

3 0.03365 0.02402 0.10448 0.03216 0.01895 0.02998 

4 0.04057 0.07339 0.1247 0.03839 0.02411 0.0389 

5 0.04697 0.09105 0.14299 0.04402 0.02457 0.04735 

6 0.0529 0.10333 0.15954 0.04911 0.02499 0.05533 

7 0.05839 0.13725 0.17452 0.05566 0.02538 0.06288 

8 0.06347 0.15883 0.18807 0.05983 0.02572 0.07002 

9 0.06819 0.18449 0.20033 0.0636 0.02603 0.07678 

10 0.07254 0.19756 0.23366 0.06702 0.02632 0.08317 

11 0.07658 0.20273 0.2437 0.07011 0.02657 0.08921 

12 0.08032 0.21539 0.25278 0.07291 0.02681 0.09492 

13 0.08378 0.22486 0.261 0.07544 0.02701 0.10032 

14 0.08699 0.23015 0.26744 0.07773 0.0272 0.10543 

15 0.08995 0.23227 0.27517 0.0798 0.02738 0.11026 

16 0.0927 0.23464 0.28125 0.08167 0.02753 0.11483 

17 0.09525 0.23646 0.28676 0.08336 0.02767 0.11916 

18 0.0976 0.23814 0.29175 0.0849 0.02774 0.12324 

19 0.09979 0.2397 0.29626 0.08443 0.02757 0.12711 

20 0.10181 0.24114 0.30034 0.08568 0.02767 0.13075 

21 0.10368 0.24248 0.31533 0.08682 0.02776 0.13421 

22 0.10541 0.24371 0.31938 0.08785 0.02785 0.13748 

23 0.10702 0.24486 0.3264 0.08878 0.02786 0.14057 

24 0.1085 0.24592 0.33934 0.08962 0.02792 0.14349 

25 0.10988 0.2469 0.35161 0.09038 0.0278 0.14671 

26 0.11015 0.24781 0.35385 0.09107 0.02786 0.14933 

27 0.11133 0.24865 0.35588 0.0917 0.02791 0.1518 

28 0.11242 0.24943 0.35771 0.09226 0.02795 0.15414 

29 0.11343 0.25165 0.35937 0.09277 0.028 0.15635 

30 0.11466 0.25232 0.36087 0.09323 0.02804 0.15844 

31 0.1158 0.25394 0.36223 0.09365 0.02807 0.16042 

32 0.11683 0.25451 0.36346 0.09403 0.0281 0.1623 

33 0.11727 0.25504 0.36457 0.09437 0.02813 0.16407 

34 0.11816 0.25653 0.36558 0.09468 0.02816 0.16574 

35 0.11953 0.25799 0.36649 0.09496 0.02818 0.16732 

36 0.12014 0.25841 0.36731 0.09522 0.02818 0.16882 

37 0.1219 0.25908 0.36806 0.09545 0.0282 0.17023 

38 0.12296 0.26116 0.36873 0.09565 0.02822 0.17157 

39 0.12357 0.2625 0.36934 0.09584 0.02823 0.17284 

40 0.12499 0.26344 0.3699 0.09601 0.02824 0.17404 

41 0.12601 0.26473 0.3704 0.09617 0.02826 0.17517 

42 0.12773 0.26597 0.37085 0.0963 0.02827 0.17624 

43 0.12918 0.26724 0.37126 0.09644 0.02828 0.17725 

44 0.13137 0.26947 0.37163 0.09654 0.02829 0.17821 
 
 
 

stage 1 to 3, stage 2 to stage 1, stage 2 to stage 3, stage 
2 to stage 4 and stage 3 to stage 1 respectively using 
Equation (11), for n 1, 2…….44. It is illustrated in 

Figure 2. 
Table   5   presents   the   values   of   interval    transition  

probabilities in continuous time from stage 3 to stage 2, 
stage 3 to 4, stage 4 to 1, stage 4 to stage 2, stage 4 to 
stage 3 respectively using equation (11), for n 1, 2,. . 

. , 45. This is graphically shown in Figure 3. 
Table 6 presents the values of virtual interval  transition
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Figure 2. The graph of interval transition probabilities for 𝜑12(𝑛), 𝜑13(𝑛), 𝜑21(𝑛), 𝜑23(𝑛) 

𝜑24(𝑛) and 𝜑31(𝑛)
  

 
 

Table 5. Interval transition probabilities for 𝜑32(𝑛), 𝜑34(𝑛), 𝜑41(𝑛),   𝜑42(𝑛 )𝑎𝑛𝑑 𝜑43(𝑛). 
 

n  𝝋𝟑𝟐(𝒏), 𝝋𝟑𝟒(𝒏) 𝝋𝟒𝟏(𝒏) 𝝋𝟒𝟐(𝒏 ) 𝝋𝟒𝟑(𝒏) 

1 0.02518 0.02772 0.00379 0.0161 0.00379 

2 0.0458 0.05042 0.00735 0.03122 0.00735 

3 0.06269 0.069 0.01069 0.04543 0.01069 

4 0.07651 0.08422 0.01383 0.05746 0.01383 

5 0.08782 0.09667 0.01678 0.07 0.01678 

6 0.09709 0.10687 0.01955 0.07118 0.01955 

7 0.10467 0.11522 0.02215 0.07229 0.02215 

8 0.11088 0.12206 0.02459 0.08268 0.02459 

9 0.11597 0.12765 0.02676 0.09244 0.02676 

10 0.11653 0.13224 0.02891 0.10162 0.02891 

11 0.11994 0.13599 0.03094 0.11024 0.03285 

12 0.12273 0.13906 0.03285 0.11833 0.03285 

13 0.12501 0.14158 0.03463 0.12594 0.03463 

14 0.12689 0.14363 0.03632 0.13308 0.03632 

15 0.12842 0.14532 0.03789 0.13979 0.03789 

16 0.12967 0.1467 0.03938 0.14609 0.03938 

17 0.1307 0.14783 0.04077 0.15202 0.04077 

18 0.13154 0.14876 0.04208 0.16092 0.04208 

19 0.13223 0.14951 0.04331 0.16144 0.04331 

20 0.13279 0.15013 0.04446 0.16535 0.04445 

21 0.13325 0.15064 0.04555 0.17096 0.04555 

22 0.13363 0.15106 0.04657 0.1753 0.04657 

23 0.13394 0.1514 0.04752 0.17937 0.04752 
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Table 5. Contd.  
 

24 0.13419 0.15168 0.04842 0.18319 0.04842 

25 0.1344 0.15191 0.04927 0.18678 0.04927 

26 0.13457 0.15209 0.05006 0.19016 0.05006 

27 0.13471 0.15224 0.05081 0.19333 0.05087 

28 0.13482 0.15237 0.05151 0.19631 0.05151 

29 0.13491 0.15247 0.05217 0.1991 0.05217 

30 0.13499 0.15258 0.05279 0.20173 0.05279 

31 0.13505 0.15264 0.05337 0.2042 0.05337 

32 0.1351 0.1527 0.05391 0.20652 0.05391 

33 0.13514 0.15275 0.05443 0.2087 0.05443 

34 0.13518 0.15278 0.05491 0.21075 0.05491 

35 0.13521 0.15281 0.05536 0.21267 0.05536 

36 0.13523 0.15285 0.05579 0.21448 0.05579 

37 0.13525 0.15287 0.05619 0.21617 0.05619 

38 0.13526 0.15288 0.05656 0.21777 0.05656 

39 0.13528 0.1529 0.05691 0.21926 0.05691 

40 0.13529 0.15211 0.05725 0.22067 0.05725 

41 0.1353 0.15212 0.05756 0.22199 0.05756 

42 0.1353 0.15213 0.05785 0.22323 0.05785 

43 0.13531 0.15213 0.05812 0.2244 0.05812 

44 0.13531 0.15214 0.05884 0.2255 0.05838 

45 0.13532 0.15214 0.05862 0.22652 0.05862 
 
 
 

 
 

Figure 3. Graph of interval transition probabilities for 𝜑32(𝑛), 𝜑34
(𝑛), 

𝜑41(𝑛)  𝜑42(𝑛 )𝑎𝑛𝑑 𝜑43(𝑛). 
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Table 6. Virtual transition probabilities 𝜑11(𝑛), 𝜑22(𝑛),  𝜑33(𝑛) and  𝜑44(𝑛). 
 

n 𝝋𝟏𝟏(𝒏) 𝝋𝟐𝟐(𝒏) 𝝋𝟑𝟑(𝒏) 𝝋𝟒𝟒(𝒏) 

1 0.98388 0.9536 0.93654 0.97633 

2 0.96895 0.91162 0.88324 0.95408 

3 0.95513 0.87363 0.83837 0.9332 

4 0.94233 0.83925 0.80037 0.91489 

5 0.88604 0.81235 0.76816 0.89645 

6 0.86392 0.788 0.74071 0.88973 

7 0.84377 0.72847 0.71722 0.88342 

8 0.81436 0.74411 0.69704 0.86813 

9 0.80564 0.70975 0.6796 0.85404 

10 0.76732 0.67533 0.66807 0.84055 

11 0.7319 0.67275 0.65487 0.82788 

12 0.71069 0.65939 0.64329 0.81598 

13 0.69429 0.6473 0.63309 0.8048 

14 0.68836 0.63636 0.62405 0.79429 

15 0.68287 0.62646 0.62362 0.78442 

16 0.67736 0.6175 0.60881 0.77515 

17 0.67266 0.6094 0.60232 0.76644 

18 0.6683 0.60213 0.59646 0.75493 

19 0.66426 0.59579 0.59115 0.75194 

20 0.66052 0.59165 0.58633 0.74472 

21 0.65705 0.58622 0.5819 0.73794 

22 0.65385 0.58253 0.57784 0.73157 

23 0.65088 0.57092 0.5741 0.72558 

24 0.64813 0.5669 0.57064 0.71996 

25 0.64558 0.55547 0.56699 0.71468 

26 0.64322 0.54015 0.56402 0.70972 

27 0.64104 0.53717 0.56125 0.70506 

28 0.63902 0.52447 0.55867 0.70068 

29 0.63715 0.52203 0.55626 0.69656 

30 0.63892 0.51983 0.55399 0.6927 

31 0.63002 0.51783 0.55188 0.68907 

32 0.62926 0.51602 0.5499 0.68566 

33 0.62666 0.51438 0.54805 0.68244 

34 0.62269 0.5129 0.5463 0.67943 

35 0.62131 0.51156 0.54466 0.67661 

36 0.61948 0.51037 0.54311 0.67395 

37 0.61616 0.50927 0.54165 0.67146 

38 0.6123 0.50828 0.54028 0.66911 

39 0.59688 0.50738 0.53899 0.66691 

40 0.59585 0.50657 0.53857 0.66484 

41 0.59044 0.50584 0.53742 0.6629 

42 0.58626 0.50517 0.53633 0.66107 

43 0.58223 0.50457 0.53531 0.65936 

44 0.57858 0.50402 0.53434 0.65775 

45 0.56516 0.50353 0.53343 0.65623 
 
 
 

probabilities in continuous time from stage 1 to stage 1, 
stage 2 to 2, stage 3 to stage 3 and stage 4 to stage 4 
respectively using Equation (11), for n 1, 2, 3 . . .45. 

This is graphically shown in Figure 4. 

DISCUSSION 
 
The paper presented Semi- Markov model to study the 
efficacy of the   hitherto   CDC   staging   system   of   the 
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Figure 3. The graph of virtual transition probabilities𝜑11(𝑛),𝜑22(𝑛),  𝜑33(𝑛) and𝜑44(𝑛). 
 
 
 

reported cases of HIV/AIDs–naïves patients in Nigeria 
using continuous time semi-Markov model. From the 
empirical analysis of the data collected, the result shows 
that there is no transition from stage 1 to stage 4: that is 

 14 0n   for all n. In other words, there is no transition 

from asymptomatic stage of HIV to late/advance AIDs. 
Additionally, when HIV-naïves clients were in stage 1, 
they transits to stage 2 most time than stage 3 and 
incidentally there is no transition to stage 4. This is 
reasonable in medical sense, as there is rarely a case of 
HIV-naïve patient shunting directly to advance AIDs 
stage 4. Also, when HIV/AIDs patients were in virtual 
stages (i.e transiting to same stage), patients are 
intransient stages most of time than any other stages. 

In the discrete time, from  Tables  4  and 5  and  Figures  

2 and 3 the result shows that there were some 
increments in the transition probabilities from states 2, 3 
and 4 to state 1 from about 0.05745, 0.01055 and 

0.00379 in the first day )1( n  to about 0.37163, 

0.17821 and 0.05862 in the forty-four days ( 44)n  and 

in the forty five days ( 45)n  respectively. The 

percentage decrease is about 37.1%, 17.8% for stages 
2, 3 in forty-four months and 5.8% for stage 4 in forty-five 
months duration. 

Table 6 and Figure 4 show that  n
11
 ,  n

22
 ,  n

33


and  n
44

  attained the values of about 0.56516, 

0.50353, 0.53343 and 0.65623 respectively for the first 
few months  or  years. They  all  however  dropped  slowly  
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and diminish to zero at infinity. These show that in 
compliance to the medical view, all HIV-naïve patient’s 
transit to AIDs stage especially when therapeutic 
intervention is lacking. The result also suggests that if the 
patients were staged in any of these stages, they 
remains/persists in that HIV/AIDs stage for some days 
before a change of real or virtual stage could occur. 
Thus, change of stage occurs less frequently over the 

time. The behavior of  n
11
 ,  n

22
 ,  n

33
  and  n

44


for
 

1, 2,3,...n  are very interesting. This is because 

they produced almost the same values of probabilities. 
This is very clear in the graphs as they almost form a 

straight line along 1y .  

Therefore, the discrete time semi-Markov models 
could be used to ascertain the prognostic and 
therapeutic adherence of HIV infected individuals on the 
treatment schedules. The model can also be used to 
predict expected stage(s) a newly infected HIV-naïve 
client is likely to be placed. The prediction model 
information could be useful in the tracking, surveillance 
and management of HIV/AIDs individual undergoing 
treatment. 
 
 
Conclusion 
 
A semi-Markov model in discrete time to determine the 
efficacy and staging of HIV/AIDs naïves using US-CDC 
criterion has been presented. The model has been able 
to ascertain long-run staging of HIV/AIDs patients. 
Prediction of their respective stages during retrospective 
cohort study has also been shown to be adequately 
captured according to the threshold values. The study 
was able to show the HIV-naïve clients remain in that 
stage for longer period if the therapeutic intervention is 
not readily available. The expected future stages is 
readily obtainable by the application of the model derived 
in this study. 
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