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ABSTRACT: It has been widely observed that most deterministic dynamical systems go into chaos for some values of 
their parameters. One of the most popular and widely used criteria is the conditional Lyapunov exponents, which constitute 
average measurements of expansion or shrinkage of small displacements along the synchronized trajectory. The 
Lyapunov characteristic exponents play a crucial role in the description of the behaviour of dynamical systems as they 
can be used to analyse the stability limit sets and to check sensitive dependence on initial conditions, that is, the presence 
of chaotic attractors. In this paper, Lyapunov stability theory and linear matrix inequalities (LMI) are employed to design 
control functions for the respective, control, and synchronization of the chaotic and hyperchaotic finance systems. The 
designed linear matrix inequalities (LMI) nonlinear controllers are capable of stabilizing the chaotic and hyperchaotic 
finance systems at any position as well as controlling it to track any trajectory that is a smooth function of time. The 
respective chaotic attractors were found to have a moderate value of the largest Lyapunov exponents (0.874959 𝑠−1 and 

0.650847 𝑠−1) with associated (Lyapunov) dimensions of 1.00 and 2.00 for the chaotic and hyperchaotic finance systems 
respectively. Based on Lyapunov stability theory and linear matrix inequalities (LMI), some necessary and sufficient criteria 
for stable synchronous behaviour are obtained and an exact analytic estimate of the threshold coupling, 𝑘𝑡ℎ, for complete 
chaos synchronization is derived. Finally, numerical simulation results are presented to validate the feasibility of the 
theoretical analysis. 
 
Keywords: Chaos control, hyperchaos, linear matrix inequalities, Lyapunov exponents, Lyapunov stability, 
synchronization. 
 
  
INTRODUCTION 
 
Chaos refers to a type of complex dynamical behaviour 
that possesses extremely sensitive dependence to tiny 
variations of initial conditions, bounded trajectories in 
phase space and fractional topological dimensions 
(Rasappan and Vaidyanathan, 2014). Meanwhile,a 
hyperchaotic system is usually classified as a chaotic 
system with more than one positive Lyapunov exponent, 
indicating that the chaotic dynamics of the system are 
expanded in more than one direction giving rise to a more 

complex attractor (Li et al., 2005). There is an easy way (in 
principle) to check this fast sensitive dependence, namely 
by the calculation of Lyapunov exponents. The 
characteristic exponents give us an idea of whether a 
specific direction in the phase space is contracting or 
expanding. An expanding direction signifies a positive 
exponent and contracting a negative one. So, for that 
particular direction, the system goes through repeated 
stretching  and  folding  processes. As  a  result  of this, we  
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cannot predict the long-term behaviour of the system given 
the initial conditions which is the very definition of chaos 
(Koshy-Chenthittayil, 2015). Owing to these properties, the 
accuracy to which the initial conditions are defined 
determines how accurately the future behaviour of a 
chaotic system can be predicted, even when the exact 
equations governing the system are known. Since 
computers can perform calculations only to a finite number 
of decimal places, the ability to predict the future behaviour 
of a chaotic system is always limited from a practical 
standpoint. This is an important reason that the accuracy 
of weather forecasts falls off dramatically as the forecast 
period increases, and it applies equally well to any physical 
or biological system that exhibits chaotic behaviour (Weiss 
et al., 1993). Chaotic systems have been widely studied 
and applied in many real-world scenarios, such as weather 
prediction, industrial control, and market analysis (Luo and 
Song, 2016; Hua et al., 2019). In particular, they are often 
used in secure communication and encryption (Saberi-Nik 
et al., 2015; Wang et al., 2016; Wang et al., 2020), as 
chaotic systems have some properties in unpredictability 
and initial state sensitivity (Lin et al., 2020). 

In practice, however, it is often desired that chaos be 
avoided and/or that the system performance be improved 
or changed in some way. Given a chaotic attractor, one 
approach might be to make some large and possibly costly 
alteration in the system which completely changes its 
dynamics in such a way as to achieve the desired behavior 
(Ott et al., 1990). The ultimate boundedness of a chaotic 
system is very important for the study of the qualitative 
behavior of a chaotic system. In fact, except for the stability 
property, boundedness is also one of the foundational 
concepts of dynamical systems, which plays an important 
role in investigating the uniqueness of equilibrium, global 
asymptotic stability, the existence of the periodic solution, 
its control and synchronization, global exponential stability 
and so on (Saberi-Nik et al., 2015). But chaotic systems 
are not analytically solvable, studying them often relies on 
numerical methods. Many such methods have been 
devised to study the many facets of nonlinear systems 
(Datseris, 2018). 

In the last decade, nonlinear dynamic analysis has 
developed in many disciplines such as economic sciences, 
ecology and environment, biology and engineering, etc. 
(Cao and Guo, 2020; Huang and Tan, 2021; Li et al., 2019; 
Qian and Hu, 2020). The pioneering research work by 
Pecora and Carroll (Pecora and Carroll, 1990), led to the 
field of chaos synchronization becoming an essential area, 
and since then, a lot of work has been done to achieve 
synchronization of various chaotic and hyperchaotic 
systems (Chen and Dong, 1998; Mkaouar and Boubaker, 
2012; Pecora and Carroll, 1990; Shao et al., 2021). 
Recently, more outcomes on equilibrium-point stability, 
bifurcation, periodicity analysis and synchronization of 
various types of recurrent networks has been widely 
investigated in (Achouri et al., 2020; Aouiti et al., 2020; 
Mobayen     et      al.,     2018).    Consequently,      numerous  
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techniques for chaos stability and control as well as 
synchronization were proposed including observer-based 
control strategy, adaptive control, active control, 
backstepping design technique, variable structure control, 
linear matrix inequalities etc. (Ahmad and Shafiq, 2020; 
Anand and Sharma, 2022; Balootaki et al., 2020; Handa 
and Sharma, 2019; Khan and Nasreen, 2021; Kumar et al., 
2021; Mkaouar and Boubaker, 2014; Mohadeszadeh and 
Delavari, 2017; Pai, 2019; Sharma et al., 2018; Shukla and 
Sharma, 2017; Xu et al., 2020; Zhao and Guo, 2015). The 
investigation of chaotic and hyperchaotic systems for 
example, Lorenz, Chen, Rossler, Chua, Sprott etc., has 
attracted much attention and achieved fruitful results due 
to their potential applications in scientific and engineering 
fields (Chaudhary and Sajid, 2022; Chen, 2002; Ge et al., 
2003; Idowu et al., 2008; Lei et al., 2004; Chen and Li, 
2004; Mofid et al., 2021; Vincent and Guo, 2012; Yamapi 
and Woafo, 2005). Ideally, chaotic and hyperchaotic 
financial systems include information on average profit 
margin, which simulate the actual complex and 
changeable financial market better and have a great 
impact on prominent economics at present. In the past 
years, the finance system has been found with rich 
phenomena (Chen, 2002; Van Dooren, 2003; Ge and 
Chen, 1996; Kocamaz et al., 2015) and, it exhibits a variety 
of interesting dynamical behaviours that span the range 
from regular to chaotic motions (Boukabou, 2008; Chen, 
2002; Filali et al., 2012; Ge and Chen, 1996; Lopez-
Mancilla and Cruz-Hernandez, 2005). 

This paper intends to develop a theoretical framework to 
study the behavior of nonlinear dynamics in finance and 
the deductions of stability and control of chaos and 
hyperchaos. Since chaos/hyperchaos control is concerned 
with the use of some designed control input to modify the 
characteristics of a parameterized nonlinear system so 
that the system becomes stable at a chosen position or 
tracks a desired trajectory. From the viewpoint of control, 
synchronization of chaotic and hyperchaotic systems is 
somewhat a great task due to their nonlinear behavior and 
sensitivity to the initial values (Sun et al., 2018). Therefore, 
chaos and hyperchaos synchronization approaches based 
on linear state feedback control laws are applied due to 
their simple implementation. A set of algebraic 
synchronization conditions are derived and solved using 
the Lyapunov approach with suitable linear matrix 
inequalities (LMI) (Karami et al., 2021; Mkaouar and 
Boubaker, 2014). In Ref. (Olusola et al., 2010), a linear 
state error feedback approach based on Lyapunov stability 
theory and linear matrix inequality (LMI) is proposed (Liao 
and Wang, 2007), to analyze the stability of the 
synchronized state and also determine sufficient criteria 
for stable synchronous behaviour in finance systems. This 
method is used because it is known that many engineering 
optimization problems can be easily translated into linear 
matrix inequality (LMI); a wide variety of problems arising 
in system and control theory can be reduced to a few 
standard convex  or  quasi-convex  optimization  problems  
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involving LMI. The resulting optimization problem can be 
solved numerically with very high efficiency (Boyd et al., 
1994). Moreover, the Lyapunov methods which are 
traditionally applied to the analysis of system stability can 
just as well be used to determine threshold coupling, 𝑘𝑡ℎ, 
at which global synchronization could be reached in 
master-slave or mutually coupled oscillators. Critical 
coupling for the on-set of stable synchronization in coupled 
or driven oscillators is relevant for various scientific and 
technological applications (Stefanski, 2009).  

In this paper, the synchronization of unidirectionally 
coupled finance systems was considered. A novel stability 
criterion using Lyapunov stability theory and linear matrix 
inequality (LMI) was proposed to determine the threshold 
coupling,𝑘𝑡ℎ, at which full and stable synchronous 

 
 
 
 
behaviour could be reached in the master-slave coupled 
chaotic and hyper-chaotic finance systems. The 
advantage of this method is that the coupling parameters 
of the system can be obtained at the same time by solving 
the LMI without predetermining them to check the criterion. 
Furthermore, the LMI can be easily solved by various 
optimization algorithms. Sufficient criteria can be applied 
to directly design the coupling strength resulting in the 
synchronization.  

The rest of the paper is structured as follows: in the next 
section, the synchronization scheme is presented, while 
section 3 is devoted to synchronization threshold and 

stability criteria, section 4  is devoted to numerical results 
and discussions and the paper is concluded in section 5.

 
 
MODEL AND SYNCHRONIZATION PRELIMINARIES 
 
Chaotic finance system  
 
Here, we consider the 3D chaotic finance system described as in the following equations: 
 
𝑥̇1 = 𝑥3 + (𝑥2 − 𝑎)𝑥1

𝑥̇2 = 1 − 𝑏𝑥2 − 𝑥1
2   

𝑥̇3 = −𝑥1 − 𝑐𝑥3         

             (1) 

  

Where 𝑥 = [𝑥1, 𝑥2, 𝑥3]𝑇 𝜖 ℝ3 are state space variables and a, b, c are positive real constants they represent the interest 
rate, investment demand, price exponent, per investment cost and elasticity of demands of commercials respectively. The 
nonlinear finance given by Eq. (1) exhibits varieties of dynamical behavior including chaotic motion for the following 
parameter values a = 0.8, b = 0.2 and c = 1.9. 
 
To facilitate the present analysis, we express system (1) in the following vector form: 

 
ẋ = Ax − f(x) + G(x)            (2) 
 
In order to examine the synchronization between two unidirectional coupled finance systems, a master-slave 
synchronization scheme was constructed for two identical chaotic finance by linear state error feedback controllers in the 
following form: 
 
M ∶ ẋ = Ax − f(x) + G(x)               

S ∶  ẏ = Ay − f(y) + G(y) + u(t)

C ∶  u(t) = 𝐾(x − y),                       

           (3) 

 

Where 𝑢 = 𝐾(x − y) is the linear state feedback control input and K ∈ ℝ3×3 is a constant control matrix that determines 
the strength of the feedback into the response system. By defining the synchronization error variable as the difference 
between the relevant dynamical variables given by Eq. (4): 
  
e = x − y              (4) 
 
we obtain the error dynamics for the master-slave system (3) as: 
 

𝑒̇ = (𝐴 − 𝐾 + 𝑀(𝑥, 𝑦))𝑒             (5) 

 

Where  𝑀(x, y) = (−

𝑥1𝑥2 − 𝑦1𝑦2

(𝑥1
2 − 𝑦1

2)

0
)  𝑎𝑛𝑑   𝐺(𝑥, 𝑦) = (

0
0
0

)       
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The chaotic finance system (1) has three equilibrium points: 
 

𝑓1 = (0,
1

𝑏
, 0) , 𝑓2,3 = (±√(

𝑐−𝑎𝑏𝑐−𝑏

𝑐
) , (

1+𝑎𝑐

𝑐
) , ∓

1

𝑐
√(

𝑐−𝑎𝑏𝑐−𝑏

𝑐
) )      

 
Thus, the Jaccobian matrix of the chaotic system is given by 
  

𝐽 = |
𝑥2 − 𝑎 𝑥1 −1
−2𝑥1 −𝑏 0

1 0 −𝑐

|             (6) 

 

At the fixed points, the respective eigenvalues are given by 𝜆1𝑛 = −𝑏, 𝜆2𝑛,3𝑛 =
(1

𝑏⁄ −𝑎−𝑐) ± √(1
𝑏⁄ −𝑎+𝑐)

2
−4

2
. Then, for a = 0.8, 

b = 0.2 and c = 1.9, the eigenvalues are estimated as follows: (𝜆11 = −0.2000,    𝜆21 = −1.7314,  𝜆31 = 4.0314), (𝜆21 =
−1.5848,     𝜆22 = 0.0055 + 1.3273𝑖,  𝜆23 = 0.0055 − 1.3273𝑖) and (𝜆31 = −1.5848,    𝜆32 = 0.0055 + 1.3273𝑖,  𝜆33 =
0.0055 − 1.3273𝑖) respectively. 
 
In the absence of the control matrix, K, Eq. (5) would have three equilibrium points at (0,5,0), (±0.8572, 1.3263, ∓0.4511). 

The aim of this study is to choose the appropriate coupling matrix, K, such that the trajectories of the master system, 𝑥(𝑡), 

and slave one, 𝑦(𝑡), satisfy 
 
lim
𝑡→∞

∥ 𝑒 ∥= lim
𝑡→∞

∥ 𝑥(𝑡) − 𝑦(𝑡) ∥= 0           (7) 

 
Where || ∗ || represents Euclidean norm of a vector. 
 
 

Procedure for calculation of Lyapunov exponents 
 
Now to obtain the trajectories of points on the surface of the sphere, we consider the action of the linearized system on 
points very close to the fiducial trajectory. In fact, the principal axes are defined by the evolution via the linearized equations 
of an initially orthonormal vector frame anchored to the fiducial trajectory (Wolf et al., 1985). The formal way to describe 
how these perturbations react is with the use of partial derivatives. To set up the variational equations we would need to 
describe the variations. For this, consider the following matrix: 
 

[𝛿] = [

𝛿𝑥1 𝛿𝑦1 𝛿𝑧1

𝛿𝑥2 𝛿𝑦2 𝛿𝑧2

𝛿𝑥3 𝛿𝑦3 𝛿𝑧3

]             (8a) 

 

Where 𝛿𝑥𝑛 is the component of the 𝑥 variation that comes from the 𝑛𝑡ℎ equation. The column sums of this matrix are the 
lengths of the 𝑥, 𝑦 and 𝑧 coordinates of the evolved variation. The rows are the coordinates of the vectors into which the 
original 𝑥, 𝑦 and 𝑧 components of the variation have evolved. Therefore, the linearized equation for the variation in the 
finance chaotic 3D and 4D systems is given by: 
 

𝛿̇𝑥𝑛 = 𝜕𝐴𝛿𝑥𝑛              (8b)            
 

Where 𝜕𝐴 is the respective Jaccobian matrices for 3D and 4D systems. In addition to the original system of 𝑛 nonlinear 

equations we will have an additional 𝑛2 linearized equations. The system now has 𝑛 + 𝑛2 = (𝑛 + 1) equations. To implement 
the procedure mentioned initially for creating the fiducial trajectory we solve the new system of 𝑛(𝑛 + 1) differential 
equations with any numerical ode algorithm, e.g., Runge-Kutta 4, for some initial conditions and a time range 𝑡𝑠𝑡𝑎𝑟𝑡 +
𝑡𝑠𝑡𝑎𝑟𝑡 . ℎ. Where 𝑡𝑠𝑡𝑎𝑟𝑡 denotes the initial time and ℎ denotes the time step (Wolf et al., 1985). 
 
 

Threshold and criteria for synchronization 
 

Here, we have employed the Lyapunov’s direct method and linear matrix inequality (LMI) (Horn and Johnson, 1991) to 
establish some criteria for global chaos synchronization in the sense of error system (5). The classical method of Lyapunov 
stability theory which employs Lyapunov functionals was known for the analysis and synthesis of synchronization 
dynamics of coupled and driven oscillators (Parekh et al., 1997; He and Vaidya, 1994). In addition to the familiar approach  
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of analyzing and synthesizing the synchronization behavior of coupled systems; the present paper employed the Lyapunov 
direct method to obtain the threshold coupling at which the two systems become completely synchronized.  To begin with, 
we have applied the following assumption to prove the main theorem of this paper. 
 

Assumption. The chaotic trajectory of the master finance (1) is bounded i.e. for any bounded initial condition x(0) within 

the defining domain of the drive system, there exists a positive real constant, σ, such that |(x(t)| ≤ σ ∀t ≥ 0. 
 

Remark 1. This assumption is reasonable and valid in the context of bounded feature of chaotic attractors (Curran and 
Chua, 1997). 
 

Next, we proceed by utilizing the stability theory on time-varied systems (Liao and Wang, 2007) to derive sufficient criteria 
for global chaos synchronization in the sense of the error system (5). The following theorem is related to the general 
control matrix. 
 

𝐾 = (

𝑘11 𝑘12 𝑘13

𝑘21 𝑘22 𝑘23

𝑘31 𝑘32 𝑘33

) ∈  ℝ3×3             (9) 

 

Theorem 1. The master-slave system (2) achieves global chaos synchronization if a symmetric positive matrix. 
 

𝑃 = (

𝑝11 𝑝12 𝑝13

𝑝12 𝑝22 𝑝23

𝑝13 𝑝23 𝑝33

)             (10) 

 

And a coupling matrix K ∈  ℝ3×3 defined in (8) are chosen such that for any t >  0  
 
Ω1 < 0
Ω2 < 0

             

Ω3 < 0              

4Ω1Ω2Ω2 > 𝐿3 

             (11) 

 

Where Ω1 = −𝑘11𝑝11 − 𝑘21𝑝12 − (𝑥1
2 − 𝑦1

2)𝑝12 − 𝑝13 − 𝑘31𝑝13 + (𝑥1
2 − 𝑦1

2 − 𝑎)𝑝11,  Ω2 = −𝑘22𝑝22 − 𝑘21𝑝12 − 𝑘32𝑝23 −

𝑏𝑝22,  Ω3 = −𝑘13𝑝13 − 𝑘23𝑝23 − 𝑘33𝑝33 − 𝑝13 − 𝑐𝑝33 and 𝐿3 =
1

2
(𝜇23

2𝜇11 + 𝜇12
2𝜇33 + 𝜇13

2𝜇22) − 𝜇12𝜇13𝜇23    

 

Proof. Let us assume a quadratic Lyapunov function of the form:  
 

𝑉(𝑒) = 𝑒𝑇𝑃𝑒               (12)                       
 
Where P is a positive definite symmetric matrix defined in (10). The derivative of the Lyapunov function with respect to 

time, t, along the trajectory of the error system (5) is of the form. 
 

𝑉̇(𝑒) = 𝑒̇𝑇𝑃𝑒 + 𝑒𝑇𝑃𝑒 ̇             (13)  
 
Substituting Eq. (5) into the system (12), we have 
 

𝑉̇(𝑒) = 𝑒𝑇[(𝐴 − 𝐾 + 𝑀)𝑇𝑃 + 𝑃(𝐴 − 𝐾 + 𝑀)]𝑒                                       (14)  
                      

𝑉̇(𝑒) < 0, If  𝜆 = (𝐴 − 𝐾 + 𝑀)𝑇𝑃 + 𝑃(𝐴 − 𝐾 + 𝑀) < 0         (15) 
 
That is 
 

𝜆 = (

𝜇11 𝜇12 𝜇13

𝜇12 𝜇22 𝜇23

𝜇13 𝜇23 𝜇33

)             (16) 

 
Where  𝜇11 = −2(𝑎 + 𝑘11 − 𝛼)𝑝11 − 2(𝑘21 + 𝛽)𝑝12 − 2(1 + 𝑘31)𝑝13;     𝜇12 = −𝑘12𝑝11 − (𝑘11 + 𝑘22 + 𝑎 + 𝑏 − 𝛼)𝑝12 −
𝑘32𝑝13 − (𝑘21 + 𝛽)𝑝22 − (1 + 𝑘31)𝑝23;    𝜇13 = (1 − 𝑘13)𝑝11 − 𝑘23𝑝12 − (𝑘11 + 𝑘33 + 𝑎 + 𝑐 − 𝛼)𝑝13 − (𝑘21 + 𝛽)𝑝23 − (1 +
𝑘31)𝑝33; 𝜇22 = −2[𝑘12𝑝12 + (𝑏 + 𝑘22)𝑝22 + 𝑘32𝑝13];  𝜇23 = (1 − 𝑘13)𝑝12 − 𝑘12𝑝13 − 𝑘23𝑝22 − (𝑘22 + 𝑘33 + 𝑏 + 𝑐)𝑝23 −
𝑘32𝑝33;       𝜇33 = 2[(1 − 𝑘13)𝑝13 − 𝑘23𝑝23 − (𝑘33 + 𝑐)𝑝33];  𝛼 = 𝑥1𝑥2 − 𝑦1𝑦2  and 𝛽 = 𝑥1

2 − 𝑦1
2  respectively.  
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The symmetric matrix in (16) is negative definite if and only if 
 
−2(𝑘11 + 𝑎 − 𝛼)𝑝11 − 2(𝑘21 + 𝛽)𝑝12 − 2(1 + 𝑘31)𝑝13 < 0  

−2𝑘12𝑝12 − 2(𝑘22 + 𝑏)𝑝22 − 2𝑘32𝑝23 < 0                                 

   2(1 − 𝑘13)𝑝13 − 2𝑘23𝑝23 − 2(𝑘33 + 𝑐)𝑝33 < 0

 4𝐿1𝐿2𝐿3 − 𝐿3 > 0                                                    
                      

          (17) 

 

Where  𝐿2 = −𝑘22𝑝22 − 𝑘21𝑝12 − 𝑘32𝑝23 − 𝑏𝑝22; 𝐿3 = −𝑘13𝑝13 − 𝑘23𝑝23 − 𝑘33𝑝33 + 𝑝13 − 𝑐𝑝33; and 𝐿3 =
1

2
(𝜇23

2𝜇11 +

𝜇12
2𝜇33 + 𝜇13

2𝜇22) − 𝜇12𝜇13𝜇23. 
 

Since the matrix P is positive definite, we have 𝑝11(𝑝22𝑝33 − 𝑝23
2) − 𝑝12

2𝑝33 + 2𝑝12𝑝13𝑝23 − 𝑝13
2𝑝22 > 0, so that 

 
−2𝑝11𝑘11 − 2(𝑎 − 𝛼)𝑝11 − 2𝑘21𝑝12 − 2𝛽𝑝12 − 2(1 + 𝑘31)𝑝13 ≤ −2𝑝11𝑘11 − 2𝑎𝑝11 − 2𝑝12𝑘21 − 2(1 + 𝑘31)𝑝13 + 2𝛼𝑝11 +
2𝛽|𝑝12| ≤ 2Ω1               (18) 
  
|−𝑝11𝑘12 − (𝑘11 + 𝑘22)𝑝12 − (𝑎 + 𝑏 − 𝛼)𝑝12 − 𝑝13𝑘32 − 𝑝11𝑘11 − (1 + 𝑘31)𝑝23 − 𝑝22𝑘21 − 𝛽𝑝22| ≤ |−𝑝11𝑘12 − (𝑘11 +
𝑘22)𝑝12 − (𝑎 + 𝑏)𝑝12 − 𝑝13𝑘32 − 𝑝11𝑘11 − (1 + 𝑘31)𝑝23 − 𝑝22𝑘21| + 𝛼𝑝12 − 𝛽𝑝22        (19) 
 
|(1 − 𝑘13)𝑝11 − (𝑘11 + 𝑘33 + 𝑎 + 𝑐 − 𝛼)𝑝13 − 𝑝12𝑘23 − 𝑝23𝑘21 − 𝛽𝑝23 − (1 + 𝑘31)𝑝33| ≤ 𝛼𝑝13 − 𝛽𝑝23 + |(1 − 𝑘13)𝑝11 −
𝑝12𝑘23 − 𝑝23𝑘21 − 𝑘11𝑝13 − 𝑘33𝑝13 − (𝑎 + 𝑐)𝑝13 − (1 + 𝑘31)𝑝33|            (20) 
 
The inequalities (11) hold if the inequalities (17) are satisfied. This completes the proof. 
  
For the purpose of applications, it is necessary that the simplest possible synchronization controllers are employed. Hence, 
the following corollaries can be obtained from the main theorem of this paper. 
 
Corollary 1: If the coupling matrix is defined by 𝐾 = 𝑑𝑖𝑎𝑔{𝑘1, 𝑘2, 𝑘3} and the symmetric positive definite matrix P is as 

defined in (10) such that 
 

𝑘1 >
(𝛼−𝑎)𝑝11−𝛽𝑝12−𝑝13

𝑝11

𝑘2 > −𝑏                          

𝑘3 >
𝑝13−𝑐𝑝33

𝑝33
                 

               (21) 

 

4[(𝛼 − 𝑎 − 𝑘1)𝑝11 − 𝛽𝑝12 − 𝑝13](−𝑝22(𝑏 + 𝑘2))[𝑝13 − (𝑘3 + 𝑐)𝑝33] > [(𝑝13 − (𝑘3 + 𝑐)𝑝33)((𝑘1 + 𝑘2 + 𝑎 + 𝑏 − 𝛼)𝑝12 +

𝛽𝑝22 + 𝑝23)2] − [(𝑘1 + 𝑎 − 𝛼)𝑝11 + 𝛽𝑝12 + 𝑝13](𝑝12 − 𝑝23(𝑘2 + 𝑘3 + 𝑏 + 𝑐))2 + [(𝑝12 − 𝑝23(𝑘2 + 𝑘3 + 𝑏 + 𝑐))(𝑝11 − (𝑘1 +
𝑘3 + 𝑎 + 𝑐 − 𝛼)𝑝13 − 𝛽𝑝23 − 𝑝33)((𝑘1 + 𝑘2 + 𝑎 + 𝑏 − 𝛼)𝑝12 + 𝛽𝑝22 + 𝑝23)] + (𝑝11 − (𝑘1 + 𝑘3 + 𝑎 + 𝑐 − 𝛼)𝑝13 − 𝛽𝑝23 −
𝑝33)2(𝑝22(𝑏 + 𝑘2))               (22) 
 
Then, the master-slave system (2) achieves global chaos synchronization. 
 
Proof. The inequalities (21) can be obtained according to the inequalities (11)  with 𝑘11 = 𝑘1, 𝑘22 = 𝑘2, 𝑘33 = 𝑘3 and 𝑘12 =
𝑘13 = 𝑘21 = 𝑘23 = 𝑘31 = 𝑘32 = 0. 
 
Corollary 2: The master-slave system (2) achieves global chaos synchronization if the coupling matrix K = diag (𝑘, 𝑘, 𝑘) 

and the positive symmetric matrix P defined in (10) are chosen such that 
  

𝑘 = 𝑚𝑎𝑥 (
(𝛼−𝑎)𝑝11−𝛽𝑝12−𝑝13

𝑝11
, −𝑏,

𝑝13−𝑐𝑝33

𝑝33
) ≥ 0            (23) 

 

4(𝑝11𝑝22𝑝33 − 𝑝11𝑝23
2 − 𝑝22𝑝13

2 − 𝑝33𝑝12
2 + 2𝑝12𝑝13𝑝23)𝑘3 + 4(𝑏𝑝11𝑝22𝑝33 − 𝑏𝑝22𝑝13

2 + 𝜔1𝑝12
2 − 𝜔5𝑝12𝑝13 + 𝜔2𝑝22𝑝33 −

𝜔3𝑝12𝑝33 − 𝜔2𝑝23
2 − 𝜔4𝑝12𝑝23 − 𝜔1𝑝11𝑝22 + 𝜔4𝑝22𝑝13 + 𝜔5𝑝23𝑝11 + 𝜔3𝑝13𝑝23)𝑘2 + 4 (𝜔2𝜔5𝑝23 − 𝜔1𝜔2𝑝22 + 𝑏𝜔2𝑝22𝑝33 −

𝑏𝜔1𝑝11𝑝22 + 𝑏𝜔4𝑝22𝑝13 −
𝜔3𝜔5

2
𝑝13 −

𝜔4
2

4
𝑝22 + 𝜔1𝜔3𝑝12 −

𝜔5
2

4
𝑝11 +

𝜔4𝜔5

2
𝑝12 −

𝜔3𝜔4

2
𝑝23 −

𝜔3
2

4
𝑝33) 𝑘 + 4 (

𝜔3𝜔4𝜔5

4
−

𝑏𝜔1𝜔2𝑝22 +
𝜔1𝜔3

2

4
− 𝑏

𝜔4
2

4
𝑝22 −

𝜔2𝜔5
2

4
) < 0          (24) 
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Where 𝜔1 = 𝑝13 − 𝑐𝑝33, 𝜔2 = (𝑎 − 𝛼)𝑝11 + 𝛽𝑝12 + 𝑝13;     𝜔3 = (𝑎 + 𝑏 − 𝛼)𝑝12 + 𝛽𝑝22 + 𝑝23;   𝜔4 = 𝑝11 − (𝑎 + 𝑐 − 𝛼)𝑝13 −
𝛽𝑝23 − 𝑝33;  𝜔5 = 𝑝12 − 𝑝23(𝑏 + 𝑐). 
 
Proof. Letting 𝑘1 = 𝑘2 =  𝑘3 = 𝑘 in the partial synchronization conditions ((21), the inequality (23) can be obtained. For 

𝑘 > 0 given by (23) we have 
 

[|−𝑝23 − (2𝑘 − (𝑎 + 𝑏 − 𝛼))𝑝12| − 𝛽𝑝22]2 ≤ [|−𝑝23 − ((𝑎 + 𝑏 − 𝛼))𝑝12| + 2𝑘|𝑝12| − 𝛽𝑝22]2;      

[|𝑝11 − (2𝑘 + 𝑎 + 𝑐 − 𝛼)𝑝13| − 𝛽𝑝23 − 𝑝33]2 ≤ [|𝑝11 − (𝑎 + 𝑐 − 𝛼)𝑝13| + 2𝑘|𝑝13| − 𝛽𝑝23 − 𝑝33]2;

|𝑝12 − (2𝑘 + 𝑏 + 𝑐)𝑝23|]2 ≤ [|𝑝12 − (𝑏 + 𝑐)𝑝23| + 2𝑘|𝑝23|]2                                                                      

      (25) 

 
Hence, the inequality (24) can be realized by partial synchronization criterion ((22)) with 𝑘1 = 𝑘2 =  𝑘3 = 𝑘. 

Since 𝑝11(𝑝22𝑝33 − 𝑝23
2) − 𝑝12

2𝑝33 + 2𝑝12𝑝13𝑝23 − 𝑝13
2𝑝22 > 0, the solution 𝑘 to the inequality (24) exists. 

 
Remark 2. We select the elements of the positive symmetric matrix P as 𝑝12 = 𝑝13 = 𝑝23 = 0, 𝑝11 = 𝛽𝑝22 = 𝑝33, and obtain 

the following algebraic synchronization criterion via the inequalities (23) and (24). 
 
𝑘 = 𝑑𝑖𝑎𝑔{𝑘, 𝑘, 𝑘}                             

𝑘 >
(𝑎+𝑏−𝛼)+√(𝛼−𝑎+𝑏)2+𝛽

2
= 𝑘𝑡ℎ   

              (26) 

 
Corollary 3: The synchronization scheme (3) achieves global chaos synchronization, if the control matrix 𝐾 =
𝑑𝑖𝑎𝑔{𝑘, 0,0}   and a symmetric positive definite matrix P given in (10) are selected such that 
 

𝑘 >
(𝛼−𝑎)𝑝11−𝛽𝑝12−𝑝13

𝑝11
                

−𝑏𝑝22 < 0                                     
𝑝13 − 𝑐𝑝33 < 0                             

              (27) 

 

𝑘2(𝑝12
2𝜔1 + 𝑏𝑝22𝑝13

2) + 𝑘(2𝜔1𝜔3𝑝12 − 𝜔5
2𝑝11 − 𝜔5𝑝13 − 2𝑏𝜔4𝑝13𝑝22 − 4𝑏𝜔1𝑝11𝑝22) + (𝜔1𝜔3

2 − 𝜔2𝜔5
2 + 𝑏𝜔4

2𝑝22 −
4𝑏𝜔1𝜔2𝑝22 + 𝜔4𝜔5) < 0             (28) 
 
Where  𝜔1 = 𝑝13 − 𝑐𝑝33, 𝜔2 = (𝑎 − 𝛼)𝑝11 + 𝛽𝑝12 + 𝑝13;   𝜔3 = (𝑎 + 𝑏 − 𝛼)𝑝12 + 𝛽𝑝22 + 𝑝23;   𝜔4 = 𝑝11 − (𝑎 + 𝑐 − 𝛼)𝑝13 −
𝛽𝑝23 − 𝑝33;   𝜔5 = 𝑝12 − 𝑝23(𝑏 + 𝑐)   
 
Remark 3. We select the symmetric positive definite matrix 
 

𝑷 = 𝑝22 (
𝛽 0 0
0 1 0
0 0 𝛽

) ; with 𝑝22 > 0.           

 
The following synchronization criterion is gained based on the criteria (26) through (28). 
 
𝑘 = 𝑑𝑖𝑎𝑔{𝑘, 0,0}                                                   

𝑘 >   𝑘 >
4𝑏(𝑎−𝛼)−𝛽

4𝑏
                                              

           (29) 

 
 

Hyperchaotic finance system 
 
Considering the new hyperchaotic finance system as defined by a set of four-order differential equations as follows: 
  
𝑥̇1 = 𝑥3 + (𝑥2 − 𝑎)𝑥1 + 𝑥4 

𝑥̇2 = 1 − 𝑏𝑥2 − 𝑥1
2            

                        

 
 𝑥̇3 = −𝑥1 − 𝑐𝑥3              
𝑥̇4 = −𝑑𝑥1𝑥2 − 𝑒𝑥4          

                   
                                                                           

            (30) 

 

Where 𝑎 = 0.9, 𝑏 = 0.2, 𝑐 = 1.2, 𝑑 = 0.2, 𝑒 = 0.17 where 𝑥 = [𝑥1, 𝑥2, 𝑥3, 𝑥4]𝑇 𝜖 ℝ4 are state space variables and a, b, c, d and 
e are positive real constants,  they  represent  the  interest  rate,  investment demand, price exponent, per investment cost  
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and elasticity of demands of commercials respectively. The nonlinear hyper-chaotic finance given by Eq. (30) exhibits 

varieties of dynamical behavior including chaotic motion for the following parameter values where  𝑎 = 0.9, 𝑏 = 0.2, 𝑐 =
1.5, 𝑑 = 0.2, 𝑒 = 0.17 as given in (Chen, 2002). 
 
To facilitate the present analysis, we express system (30) in the following vector form: 
 
ẋ = Ax − f(x) + G(x)             (31) 
 
In order to examine the synchronization between two unidirectional coupled hyper-chaotic finances, we construct a master-
slave synchronization scheme for two identical hyper-chaotic finance by linear state error feedback controller in the 
following form: 
 
M ∶ ẋ = Ax − f(x) + G(x)               

S ∶  ẏ = Ay − f(y) + G(y) + u(t)

C ∶  u(t) = 𝐾(x − y),                       

           (32) 

 
Where u = K(x−y) is the linear state feedback control input and K ∈ ℝ4×4 is a constant control matrix that determines the 
strength of the feedback into the response system. By defining the synchronization error variable as the difference between 
the relevant dynamical variables given by: 
 
e = x − y              (33) 
 

We obtain the error dynamics for the master-slave system ((32) as: 
 

𝑒̇ = (𝐴 − 𝐾 + 𝑀(𝑥, 𝑦))𝑒             (34) 
 

Where  𝑀(x, y) = (

𝑥1𝑥2 − 𝑦1𝑦2

−(𝑥1
2 − 𝑦1

2)
0

−𝑑(𝑥1𝑥2 − 𝑦1𝑦2)

)  𝑎𝑛𝑑 𝐺(𝑥, 𝑦) = (

0
0
0
0

) 

 

The hyper-chaotic finance system (30) has three equilibrium points: 
 

𝜌1 = (0,
1

𝑏
, 0,0) ;  𝜌2,3 = (±𝜀,

𝑒+𝑎𝑐𝑒

𝑐(𝑒−𝑑)
, ∓

𝜀

𝑐
,

𝑑𝜀(1+𝑎𝑐)

𝑐(𝑑−𝑒)
) ; Where  𝜀 = √1 +

𝑒𝑏+𝑎𝑏𝑐𝑒

𝑐(𝑑−𝑒)
  

 

Thus, the Jaccobian matrix is given by 
 

𝐽 = | 

(𝑥2 − 𝑎)   𝑥1

−2𝑥1 −𝑏
 
1      1
0     0

−1          0
−𝑑𝑥2       −𝑑𝑥1

  
−𝑐 0
0 −𝑒

|           (35) 

 

Then, the eigenvalues for the respective equilibrium points at 𝑎 = 0.9, 𝑏 = 0.2, 𝑐 = 1.2, 𝑑 = 0.2, 𝑒 = 0.17, are given 
by: (𝜆11 = 3.6298, 𝜆21 = 0.1412, 𝜆31 = −1.0410  𝜆41 = −0.2000 ); (𝜆12 =  −10.2024, 𝜆22 = 0.0209, 𝜆32 = −0.7168  𝜆42 =
−1.393) and (𝜆13 = −10.2024, 𝜆23 = 0.0209, 𝜆33 = −0.7168  , 𝜆43 = −1.3939) respectively. 
 

In the absence of the control matrix, 𝐾, Eq. (34), would have three equilibrium points at (0,5,0,0), 
(±1.7218, −9.8222, ∓1.4348, 19.8958). Our aim is to choose the appropriate coupling matrix 𝐾, such that the trajectories 
of the master system, 𝑥(𝑡), and slave one 𝑦(𝑡) satisfy 
 

lim
𝑡→∞

∥ 𝑒 ∥= lim
𝑡→∞

∥ 𝑥(𝑡) − 𝑦(𝑡) ∥= 0           (36)                                                   

 

Where || ∗ || represents Euclidean norm of a vector. 
 

Assumption. The chaotic trajectory of the master hyper-chaotic finance (30) is bounded i.e. for any bounded initial 
condition x(0) within the defining domain of the drive system, there exists a positive real constant, σ, such that |(x(t)|  ≤
 σ ∀t ≥  0. 
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Remark 1 This assumption is reasonable and valid in the context of bounded feature of chaotic attractors (Curran and 
Chua, 1997). 
 
Next, we proceed by utilizing the stability theory on time-varied systems (Liao and Wang, 2007) to derive sufficient criteria 
for global chaos synchronization in the sense of the error system (33). The following theorem is related to the general 
control matrix. 
 

𝐾 = ( 

𝑘11 𝑘12

𝑘21 𝑘22

𝑘13 𝑘14

𝑘23 𝑘24

𝑘31 𝑘32

𝑘41 𝑘42

𝑘33 𝑘34

𝑘43 𝑘44

)   ∈  ℝ4×4            (37)                         

 
Theorem 1. The master-slave system (30) achieves global chaos synchronization if a symmetric positive matrix. 
 

𝑷 = ( 

𝑝11 𝑝12

𝑝12 𝑝22

𝑝13 𝑝14

𝑝23 𝑝24
𝑝13 𝑝23

𝑝14 𝑝24

𝑝33 𝑝34

𝑝34 𝑝44

)            (38) 

 
And a coupling matrix K ∈  ℝ4×4 defined in (37) are chosen such that for any t > 0   
 
Φ1 = −𝑝11(𝑎 − 𝛼 + 𝑘11) − 𝑝12𝑘21 − 𝑝13(1 + 𝑘31) − 𝑝14(𝑑𝛼 + 𝑘41) − |𝑝12|𝛽 < 0 

Φ2 = −𝑝12𝑘12 − 𝑝22(𝑏 + 𝑘22) − 𝑝23𝑘32 − 𝑝24𝑘42 < 0                                                    

Φ3 = −𝑝13𝑘13 + 𝑝13 − 𝑝23𝑘23 − 𝑝33(𝑐 + 𝑘33) − 𝑝34𝑘34 < 0                                         

 Φ4 = 𝑝14(1 − 𝑘14) − 𝑝24𝑘24 − 𝑝34𝑘34 − 𝑝44(𝑒 + 𝑘44)                                                     

such that 4Φ1Φ2Φ3Φ4 = 𝐿4                                                                                                    

      (39)           

 

Where 𝐿4 =
1

4
[(𝜇12

2𝜇34
2 − 𝜇11𝜇23

2𝜇44 + 𝜇13
2𝜇24

2 − 𝜇11𝜇24
2𝜇33 + 2𝜇11𝜇23𝜇24𝜇34 − 𝜇13

2𝜇22𝜇44 + 𝜇12𝜇13𝜇23𝜇44 −

𝜇12𝜇14𝜇23𝜇34 + 𝜇14
2𝜇23

2 − 𝜇11𝜇22𝜇34
2 + 2𝜇12𝜇14𝜇24𝜇33 − 𝜇12

2𝜇33𝜇44 + 𝜇12𝜇13𝜇23𝜇24 − 2𝜇12𝜇13𝜇24𝜇34 + 2𝜇13𝜇14𝜇22𝜇34 −
2𝜇13𝜇14𝜇23𝜇24 − 𝜇14

2𝜇22𝜇33 − 𝜇12𝜇14𝜇23𝜇24)]      
 
Proof. Let us assume a quadratic Lyapunov function of the form: 
                         

 𝑉(𝑒) = 𝑒𝑇𝑃𝑒             (40) 
 
Where 𝑷 is a positive definite symmetric matrix defined in (38). The derivative of the Lyapunov function with respect to 
time, t, along the trajectory of the error system (33) is of the form: 
 

𝑉̇(𝑒) = 𝑒̇𝑇𝑃𝑒 + 𝑒𝑇𝑃𝑒̇              (41) 
 
Substituting Eq. (34) into the system (41), we have 
 

𝑉̇(𝑒) = 𝑒𝑇[(𝐴 − 𝐾 + 𝑀)𝑇𝑃 + 𝑃(𝐴 − 𝐾 + 𝑀)]𝑒              (42) 
 

𝑉̇(𝒆) < 0, if 
 

 𝜆 = (𝐴 − 𝐾 + 𝑀)𝑇𝑃 + 𝑃(𝐴 − 𝐾 + 𝑀) < 0            (43) 
 

That is,   𝜆 = (

𝜇11 𝜇12

𝜇12 𝜇22

𝜇13 𝜇14

𝜇23 𝜇24
𝜇13 𝜇23

𝜇14 𝜇24

𝜇33 𝜇34

𝜇34 𝜇44

)           (44) 

 
Where  𝜇11 = −2𝑝11(𝑎 + 𝑘11 − 𝛼) − 2𝑝12(𝑘21 + 𝛽) − 2𝑝13(1 + 𝑘31) − 2𝑝14(𝑘41 + 𝑑𝛼); 𝜇12 = −𝑝11𝑘12 − 𝑝12(𝑘11 + 𝑘22 + 𝑎 +
𝑏 − 𝛼) − 𝑝13𝑘32 − 𝑝14𝑘42 − 𝑝22(𝑘21 + 𝛽) − 𝑝23(𝑘31 + 1) − 𝑝24(𝑑𝛼 + 𝑘41);  
𝜇13 = 𝑝11(1 − 𝑘13) − 𝑝12𝑘23 − 𝑝13(𝑘11 + 𝑘33 + 𝑎 + 𝑐 − 𝛼) − 𝑝14𝑘43 − 𝑝23(𝛽 + 𝑘21) − 𝑝33(1 + 𝑘31) − 𝑝34(𝑑𝛼 + 𝑘41); 𝜇14 =
𝑝11(1 − 𝑘14) − 𝑝12𝑘24 − 𝑝13𝑘34 − 𝑝14(𝑘11 + 𝑘44 + 𝑎 + 𝑒 − 𝛼) − 𝑝24(𝛽 + 𝑘21) − 𝑝34(1 + 𝑘31) − 𝑝44(𝑑𝛼 + 𝑘41);   𝜇22 = 
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−2[𝑝12𝑘12 + 𝑝22(𝑏 + 𝑘22) + 𝑝23𝑘32 + 𝑝24𝑘42;    𝜇23 = 𝑝12(1 − 𝑘13) − 𝑝13𝑘12 − 𝑝22𝑘23 − 𝑝23(𝑘22 + 𝑘33 + 𝑏 + 𝑐) − 𝑝24𝑘43 −
𝑝33𝑘32 − 𝑝34𝑘42;    𝜇24 = 𝑝12(1 − 𝑘14) − 𝑝14𝑘12 − 𝑝23𝑘34 − 𝑝24(𝑘22 + 𝑘44 + 𝑏 + 𝑒) − 𝑝44𝑘42;   𝜇33 = 2[𝑝13(1 − 𝑘13) −
𝑝23𝑘23 − 𝑝33(𝑐 + 𝑘33) − 𝑝34𝑘43;  𝜇34 = 𝑝13(1 − 𝑘14) + 𝑝14(1 − 𝑘13) − 𝑝23𝑘24 − 𝑝24𝑘23 − 𝑝33𝑘34 − 𝑝34(𝑘33 + 𝑘44 + 𝑐 + 𝑒) −
𝑝44𝑘43 and 𝜇44 = 2[𝑝14(1 − 𝑘14) − 𝑝24𝑘24 − −𝑝34𝑘34 − 𝑝44(𝑒 + 𝑘44)]. 
 

The symmetric matrix in (44) is negative definite if and only if 
 
−2𝑝11𝑘11 − 2𝑝11(𝑎 − 𝛼) − 2𝑝12(𝑘21 + 𝛽) − 2𝑝13(1 + 𝑘31) − 2𝑝14(𝑘41 + 𝑑𝛼) < 0

−2[𝑝12𝑘12 + 𝑝22(𝑏 + 𝑘22) + 𝑝23𝑘32 + 𝑝24𝑘42] < 0                                                             

2[𝑝13(1 − 𝑘13) − 𝑝23𝑘23 − 𝑝33(𝑐 + 𝑘33) − 𝑝34𝑘43] < 0                                                    

2𝑝14(1 − 𝑘14) − 2𝑝24𝑘24 − 2𝑝34𝑘34 − 2𝑝44(𝑒 + 𝑘44) < 0                                               
4L1L2L3L4 − 𝐿5 > 0                                                                                                                   

             (45) 

 
Where  𝐿1 = |−𝑝12(𝑘21 + 𝛽) − 𝑝13(1 + 𝑘31) − 2𝑝14(𝑘41 + 𝑑𝛼) − 𝑝11𝑘11|; 𝐿2 = |𝑝12𝑘12 + 𝑝22(𝑏 + 𝑘22) + 𝑝23𝑘32 + 𝑝24𝑘42|; 
𝐿3 = |𝑝13(1 − 𝑘13) − 𝑝23𝑘23 − 𝑝33(𝑐 + 𝑘33) − 𝑝34𝑘43|;   𝐿4 = |𝑝14(1 − 𝑘14) − 𝑝24𝑘24 − 𝑝34𝑘34 − 𝑝44(𝑒 + 𝑘44)| and  𝐿5 = 𝐿4. 
 
Since the matrix P is positive definite, we have 
 
𝑝11𝑝22𝑝33𝑝44 − 𝒫4 > 0             (46) 
 

Where 𝒫4 = (𝑝12
2𝑝34

2 − 𝑝11𝑝23
2𝑝44 + 𝑝13

2𝑝24
2 − 𝑝11𝑝24

2𝑝33 + 2𝑝11𝑝23𝑝24𝑝34 − 𝑝13
2𝜇22𝜇44 + 𝑝12𝑝13𝑝23𝑝44 −

𝑝12𝑝14𝑝23𝑝34 + 𝑝14
2𝑝23

2 − 𝑝11𝑝22𝑝34
2 + 2𝑝12𝑝14𝑝24𝑝33 − 𝑝12

2𝑝33𝑝44 + 𝑝12𝑝13𝑝23𝑝24 − 2𝑝12𝑝13𝑝24𝑝34 + 2𝑝13𝑝14𝑝22𝑝34 −
2𝑝13𝑝14𝑝23𝑝24 − 𝑝14

2𝑝22𝑝33 − 𝑝12𝑝14𝑝23𝑝24); so that −2𝑝11(𝑎 − 𝛼 + 𝑘11) − 2𝑝12𝑘21 − 2𝑝13(1 + 𝑘31) − 2𝑝14(𝑑𝛼 + 𝑘41) −
2𝑝12𝛽 ≤ −2𝑝11𝑘11 − 2𝑝11(𝑎 − 𝛼) − 2𝑝12𝑘21 − 2𝑝13(1 + 𝑘31) − 2𝑝14(𝑑𝛼 + 𝑘41) + 2|𝑝12|𝛽 ≤ 2Φ1, |−𝑝11𝑘12 − 𝑝12(𝑘11 + 𝑘22 +
𝑎 + 𝑏 − 𝛼) − 𝑝13𝑘32 − 𝑝14𝑘42 − 𝑝22(𝑘21 + 𝛽) − 𝑝23(𝑘31 + 1) − 𝑝24(𝑑𝛼 + 𝑘41| ≤ |−𝑝11𝑘12 − 𝑝12(𝑘11 + 𝑘22 + 𝑎 + 𝑏 − 𝛼) −
𝑝13𝑘32 − 𝑝14𝑘42 − 𝑝22𝑘21 − 𝑝23(𝑘31 + 1) − 𝑝24(𝑑𝛼 + 𝑘41| − 𝑝22𝛽, |𝑝11(1 − 𝑘13) − 𝑝12𝑘23 − 𝑝13(𝑘11 + 𝑘33 + 𝑎 + 𝑐 − 𝛼) −
𝑝14𝑘43 − 𝑝23(𝛽 + 𝑘21) − 𝑝33(1 + 𝑘31) − 𝑝34(𝑑𝛼 + 𝑘41)| ≤ |𝑝11(1 − 𝑘13) − 𝑝12𝑘23 − 𝑝13(𝑘11 + 𝑘33 + 𝑎 + 𝑐 − 𝛼) − 𝑝14𝑘43 −
𝑝23𝑘21 − 𝑝33(1 + 𝑘31) − 𝑝34(𝑑𝛼 + 𝑘41)| − 𝑝23𝛽, |𝑝11(1 − 𝑘14) − 𝑝12𝑘24 − 𝑝13𝑘34 − 𝑝14(𝑘11 + 𝑘44 + 𝑎 + 𝑒 − 𝛼) − 𝑝24(𝛽 +
𝑘21) − 𝑝34(1 + 𝑘31) − 𝑝44(𝑑𝛼 + 𝑘41)| ≤ |𝑝11(1 − 𝑘14) − 𝑝12𝑘24 − 𝑝13𝑘34 − 𝑝14(𝑘11 + 𝑘44 + 𝑎 + 𝑒 − 𝛼) − 𝑝24𝑘21 − 𝑝34(1 +
𝑘31) − 𝑝44(𝑑𝛼 + 𝑘41)| − 𝛽𝑝24,  
 
The inequalities (45)) hold if the inequalities (39) are satisfied. This completes the proof.  
 
For the purpose of applications, it is necessary that the simplest possible synchronization controllers are employed. Hence, 
the following corollaries can be obtained from the main theorem of this paper. 
  
Corollary 1: If the coupling matrix is defined by 𝐾 = 𝑑𝑖𝑎𝑔{𝑘1, 𝑘2, 𝑘3, 𝑘4} and the symmetric positive definite matrix P is as 
defined in (45) such that 
 

𝑘1 >
(𝛼−𝑎)𝑝11+𝛽|𝑝12|−𝑝13

𝑝11
  

𝑘2 > −𝑏                              

𝑘3 >
𝑝13−𝑐𝑝33

𝑝33

𝑘4 >
𝑝14−𝑒𝑝44

𝑝44

                     

              (47) 

                                                                                                    
4[|𝑝22|(𝑏 + 𝑘2)(𝑘1𝑝11 + 𝜑2)(𝑘3𝑝33 − 𝜑1)(𝑘4𝑝44 − 𝜑3)] > [𝑝12(𝑘1 + 𝑘2) + 𝜑4]2(𝑘3𝑝33 − 𝜑1)(𝑘4𝑝44 − 𝜑3) + [𝑝13(𝑘1 + 𝑘3) −

𝜑5]2(𝑝22(𝑘2 + 𝑏))(𝑘4𝑝44 − 𝜑3) + [𝑝14(𝑘1 + 𝑘4) − 𝜑6]2(𝑝22(𝑘2 + 𝑏))(𝑘3𝑝33 − 𝜑1)      (48) 

                                                                                 
Where  𝜑1 = 𝑝13 − 𝑐𝑝33;  𝜑2 = 𝑝11(𝑎 − 𝛼) + 𝑝12𝛽 + 𝑝13 + 𝑝14𝑑𝛼;  𝜑3 = 𝑝14 − 𝑝44𝑒;  𝜑4 = 𝑝12(𝑎 + 𝑏 − 𝛼) + 𝑝22𝛽 + 𝑝23 +
𝑝24𝑑𝛼;  𝜑5 = 𝑝11 − 𝑝13(𝑎 + 𝑐 − 𝛼) − 𝑝23𝛽 − 𝑝33 − 𝑝34𝑑𝛼. 
 
By ignoring some terms in order to reduce stress Eq. (48) is obtained. Thus, the master-slave system (32) achieves global 
chaos synchronization. 
 
Proof: The inequalities (47) can be obtained according to the inequalities (39) with 𝑘11 = 𝑘1, 𝑘22 = 𝑘2, 𝑘33 =   𝑘3, 𝑘44 =   𝑘4 

and 𝑘12 = 𝑘13 = 𝑘14 =   𝑘21 = 𝑘23 = 𝑘24 = 𝑘31 = 𝑘32 = 𝑘34 = 0.  
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Corollary 2: The master-slave system (32) achieves global chaos synchronization if the coupling matrix 𝑲 =
𝑑𝑖𝑎𝑔{𝑘, 𝑘, 𝑘, 𝑘} and the positive symmetric matrix P defined in (38) are chosen such that 
 

𝑘 = 𝑚𝑎𝑥 (
(𝛼−𝑎)𝑝11−𝛽𝑝12−𝑝13

𝑝11
, −𝑏,

𝑝13−𝑐𝑝33

𝑝33
,

𝑝14−𝑒𝑝44

𝑝44
) ≥ 0          (49) 

 

𝟒𝒌𝟒 + 4𝑘3(𝑎 + 𝑏 + 𝑐 + 𝑒 − 𝛼) + 4𝑘2[𝑏(𝑎 − 𝛼) + 𝑐(𝑎 − 𝛼) + 𝑒(𝑎 − 𝛼) + 𝑏𝑐 + 𝑏𝑒 + 𝑐𝑒 −
𝑝11

4𝑝44
−

𝑝44

𝑝11
(

𝑑𝛼

2
)2 + (

𝑑𝛼

2
) −

𝑝11

4𝑝33
−

𝑝33

4𝑝11
+

1

2
−

𝑝22

𝑝11
(

𝛽

2
)2] + 4𝑘[𝑏𝑐𝑒 + (𝑎 − 𝛼)(𝑏𝑐 + 𝑏𝑒 + 𝑐𝑒) −

𝑝11

𝑝44
(

𝑏+𝑐

4
) −

𝑝44

𝑝11
(𝑏 + 𝑐)(

𝑑𝛼

2
)2 + (𝑏 + 𝑐) (

𝑑𝛼

2
) −

(𝑏+𝑒)𝑝11

4𝑝33
−

(𝑏+𝑒)𝑝33

4𝑝11
+

(
𝑏+𝑒

2
) −

𝑝22

𝑝11
(𝑐 + 𝑒) (

𝛽

2
)2] + 4[𝑏𝑐𝑒(𝑎 − 𝛼) −

𝑏𝑐𝑝11

4𝑝44
− 𝑏𝑐

𝑝44

𝑝11
(

𝑑𝛼

2
)2 +

𝑏𝑐𝑑𝛼

2
− 𝑏𝑒

𝑝11

4𝑝33
−

𝑝33

4𝑝11
𝑏𝑒 +

𝑏𝑒

2
− 𝑐𝑒

𝑝22

𝑝11
(

𝛽

2
)2] > 0  (50) 

 
Proof: Letting 𝑘1 = 𝑘2 =  𝑘3 = 𝑘4 = 𝑘 in the partial synchronization conditions (47), the inequality (48) can be obtained. 
 
For 𝑘 > 0 given by (48), we have 
 
[|𝑝12(2𝑘 + 𝑎 + 𝑏 − 𝛼) + 𝑝23 + 𝑝24𝑑𝛼| + 𝑝22𝛽]2 ≤ [|𝑝12(𝑎 + 𝑏 − 𝛼) + 𝑝23 + 𝑝24𝑑𝛼| + 2𝑘|𝑝12| + 𝑝22𝛽 ]2                                  

[|𝑝11 − 𝑝13(2𝑘 + 𝑎 + 𝑐 − 𝛼) − 𝑝33| − 𝑝23𝛽]2 ≤ [|𝑝11 − 𝑝13(𝑎 + 𝑐 − 𝛼) − 𝑝33| + 2𝑘|𝑝13| − 𝑝23𝛽]2                                                

(|𝑝11 − 𝑝14(𝑘11 + 𝑘44 + 𝑎 + 𝑒 − 𝛼) − 𝑝34 − 𝑝44𝑑𝛼| − 𝑝24𝛽)2 ≤ (|𝑝11 − 𝑝14(𝑎 + 𝑒 − 𝛼) − 𝑝34 − 𝑝44𝑑𝛼| + 2𝑘|𝑝14| − 𝑝24𝛽)2

 

 
Thus, the inequality (49) can be realized by partial synchronization criterion (48) with 𝑘1 = 𝑘2 =  𝑘3 = 𝑘4 = 𝑘.  
 
Since 𝑝11𝑝22𝑝33𝑝44 − [𝑝12

2𝑝33𝑝44 + 𝑝13
2𝑝22𝑝44 + 𝑝14

2𝑝22𝑝33 + 𝑝23
2𝑝11𝑝44 + 𝑝24

2𝑝11𝑝33 + 𝑝34
2𝑝11𝑝22 − 𝑝12

2𝑝34
2 −

𝑝13
2𝑝24

2 − 𝑝14
2𝑝23

2 − 2𝑝11𝑝23𝑝24𝑝34 − 2𝑝12𝑝14𝑝24𝑝33 − 2𝑝13𝑝14𝑝22𝑝34 + 2𝑝12𝑝13𝑝24𝑝34 + 2𝑝13𝑝14𝑝23𝑝24 − 𝑝12𝑝13𝑝23𝑝24 +
𝑝12𝑝14𝑝23𝑝24 − 𝑝12𝑝13𝑝23𝑝24 + 𝑝12𝑝14𝑝23𝑝34] > 0, 
 
Hence, the solution 𝑘 to the inequality (50) exists. 

 
Remark 2. We select the elements of the positive symmetric matrix P as 𝑝12 = 𝑝13 = 𝑝14 = 𝑝23 = 𝑝24 = 𝑝34 = 0, 𝑝11 =
𝛽𝑝22 = 𝑝33 = 𝑑𝛼𝑝44, and obtain the following algebraic synchronization criterion via the inequalities (49) and (50). 

 
𝑘 = 𝑑𝑖𝑎𝑔{𝑘, 𝑘, 𝑘, 𝑘}                                                

𝑘 >
(𝑎+𝑏−𝛼)+√(𝛼−𝑎+𝑏)2+𝛽

2
= 𝑘𝑡ℎ                          

          (51) 

 
Corollary 3: The synchronization scheme (32) achieves global chaos synchronization, if the control matrix 𝐾 =
𝑑𝑖𝑎𝑔{𝑘, 0,0,0} and a symmetric positive definite matrix P given in (38) are selected such that  

 

𝑘1 >
(𝛼−𝑎)𝑝11+𝛽|𝑝12|−𝑝13

𝑝11

𝑘2 > −𝑏                            

𝑘3 >
𝑝13−𝑐𝑝33

𝑝33

𝑘4 >
𝑝14−𝑒𝑝44

𝑝44

                   

                 (52) 

 
𝑘2(𝑝14

2𝑏𝜑1𝑝22 + 𝑝13
2𝑏𝜑3𝑝22 − 𝑝12

2𝜑1𝜑3) + 𝑘(𝑏𝜑1𝜑3𝑝11𝑝22 − 2𝜑1𝜑3𝜑4𝑝12 − 2𝑏𝜑3𝜑5𝑝13𝑝22 − 2𝑏𝜑1𝜑6𝑝14𝑝22) +
(𝑏𝜑1𝜑2𝜑3𝑝22 − 𝑏𝜑1𝜑6

2𝑝22) < 0            (53) 

 
Where 𝜑1 = 𝑝13 − 𝑐𝑝33;  𝜑2 = 𝑝11(𝑎 − 𝛼) + 𝑝12𝛽 + 𝑝13 + 𝑝14𝑑𝛼; 𝜑3 = 𝑝14 − 𝑝44𝑒, 𝜑4 = 𝑝12(𝑎 + 𝑏 − 𝛼) + 𝑝22𝛽 + 𝑝23 +
𝑝24𝑑𝛼;  𝜑5 = 𝑝11 − 𝑝13(𝑎 + 𝑐 − 𝛼) − 𝑝23𝛽 − 𝑝33 − 𝑝34𝑑𝛼; and 𝜑6 = 𝑝11 − 𝑝14(𝑎 + 𝑒 − 𝛼) − 𝑝24𝛽 − 𝑝34 − 𝑝44𝑑𝛼 respectively. 

 
Remark 3. We select the symmetric positive definite matrix  

 

𝑷 = 𝑝22 (

𝛽 0
0 1

0 0
0 0

0 0
0 0

𝛽 0
0 𝛾

),   where 𝛾 =
𝛽

𝑑𝛼
 with 𝑝22 > 0.  
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Figure 1. The phase portrait showing a chaotic attractor of nonlinear finance system with the following 
parameters 𝑎 = 0.8, 𝑏 = 0.2, 𝑎𝑛𝑑  𝑐 = 1.9 

 
 
 

The following synchronization criterion is gained based on 
the criteria (51) and (52). 
 
𝑘 = 𝑑𝑖𝑎𝑔{𝑘, 0,0,0}                                                

𝑘 > 𝑘 > 𝑎 − 𝛼 −
𝛽

4𝑏
                                                

   (54) 

 

Where 𝛼 = 𝑥1𝑥2 − 𝑦1𝑦2  and 𝛽 = 𝑥1
2 − 𝑦1

2 
 
 
RESULTS AND DISCUSSION 
 
In this section, we present numerical simulation results to 
confirm the obtained criteria for 3D and 4D finance 
systems. 
 
 

Deduction from finance 3D system 
 

Here, we utilized the fourth order Runge-Kutta routine with 
the following initial conditions: (𝑥1(0), 𝑦1(0)) =
(−0.2, −0.1), (𝑥2(0), 𝑦2(0)) = (0.1, −0.1), (𝑥3(0), 𝑦3(0)) =
(0.2, 0.1),  a time-step of 0.001 and fixing the parameter 

values of 𝑎 = 0.9, 𝑏 = 0.2, 𝑐 = 1.7 as in Figure 1, to ensure 
chaotic motion, we solved the master-slave system (2) 
with the control matrices as defined in Eqs. (26) and (29). 
The simulation results obtained reveal that the trajectory of 
the master finance system depicted in Figure 1, is 
bounded, the time series of finance system is shown in 
Figure 4 and the error dynamics shown in Figure 5 oscillate  

chaotically with time when the two systems are decoupled. 
The partial variables 𝑥1, 𝑥2 and 𝑥3 of the chaotic attractor 

satisfy 𝑥1(t)  =  −𝑐𝑥3(t) < 1 for any t ≥ 0.  
The critical coupling at which complete synchronization 

could be observed is vital for many scientific and 
technological applications because it provides useful 
information regarding the operational regime for optimal 
performance in coupled systems. In Figure 6, we displayed 
a simulation result of average error, 𝐸𝑎𝑣𝑒, against coupling, 

𝑘, and noticed that as 𝑘, increases and as full 

synchronization is approached, 𝐸𝑎𝑣𝑒→ 0 asymptotically at 
the threshold coupling, 𝑘𝑡ℎ ≈ 0.9. Then for all 𝑘 > 𝑘𝑡ℎ, 𝐸𝑎𝑣𝑒 
= 0 and remains stable as t → ∞ implying that the 
oscillators are completely synchronized. Interestingly, it 
was noticed that by direct calculations of Eq. (26) for the 
control matrix, 𝐾 = 𝑑𝑖𝑎𝑔{𝑘, 𝑘, 𝑘},  𝑘 > 𝑘𝑡ℎ = 1.0. Thus, the 
obtained criterion is in good agreement with numerical 
simulation result. Using the criterion defined by Eq. (26), 
one readily obtains a coupling matrix 𝐾 = 𝑑𝑖𝑎𝑔{1.0,1.0,1.0} 
by which the master-slave system (2) achieves chaos 
synchronization. Figure 7 shows the synchronization 
for 𝑘 = 1.2.  Finally, we depict the simulation results for the 
second case in which we choose constant control 
matrix 𝐾 = 𝑑𝑖𝑎𝑔{𝑘, 0,0}, such that 𝑘 > 1.0 which satisfies 
the condition in Eq. (29). The simulation results displayed 
in Figure 7 confirmed that complete synchronization is 
achieved for 𝑘 = 5.0 > 𝑘𝑡ℎ. Notice that in both cases, the 
synchronization is already reached at t = 25, showing an 
excellent transient performance.
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Figure 2. The phase portrait showing a chaotic attractor of nonlinear hyperchaotic finance system with the following 
parameters: 𝑎 = 0.9, 𝑏 = 0.2, 𝑐 = 1.5, 𝑑 = 0.2 𝑎𝑛𝑑  𝑒 = 0.17. 

 
 
 

 

 
 

Figure 3. Showing the dynamics of Lyapunov exponents for (a) finance system (b) 
hyperchaotic finance system. 
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Figure 4. Time series for the synchronized master-slave systems 𝑥 = (−0.2, 0.1, 0.2) and 𝑦 =
(−0.1, −0.1, 0.1) respectively with the designed controllers. 

 
 
 

 
 

Figure 5. Time response of the error signals of the synchronized finance (3D) systems with 
the designed controllers. 

 
 
 

Deduction from Hyper-chaotic (4D) finance system  
 
Using the fourth order Runge-Kutta routine with the 
following initial conditions: (𝑥1(0), 𝑦1(0)) =
(−0.2, −0.1), (𝑥2(0), 𝑦2(0)) = (0.1, −0.1), (𝑥3(0), 𝑦3(0)) =

(0.2, 0.1), (𝑥4(0), 𝑦4(0)) = (0.1, − 0.2) a time-step of 0.001 
and fixing the parameter values of 𝑎 = 0.9, 𝑏 = 0.2, 𝑐 =
1.2, 𝑑 = 0.2, and 𝑒 = 0.17 as in Figure 2, to ensure hyper- 
chaotic motion of the state variables, we solved the 
master-slave  system (30)  with   the   control   matrices  as  
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Figure 6. Average error, 𝐸𝑎𝑣𝑒, as a function of (a) time for the uncoupled systems (b) 
the coupling strength, 𝑘 with the following parameters: = 0.9, 𝑏 = 0.2, 𝑐 = 1.7. 

 
 
 

 

 
 

Figure 7. Time response of the global synchronization errors of the coupled hyperchaotic 
systems with the coupling strength (a) 𝐾 = 𝑑𝑖𝑎𝑔{1.0,1.0,1.0} and (b) 𝐾 = 𝑑𝑖𝑎𝑔{5.0,0.0,0.0}. 
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Figure 8. Time series for the synchronized master-slave systems 𝑥 = (−0.2, 0.1, 0.2, 0.1) and 𝑦 =
(−0.1, −0.1, 0.1, −0.2) respectively with the designed controllers. 

 
 
 

 
 

Figure 9. Time response of the error signals of the synchronized finance (4D) systems with the 
designed controllers. 

 
 
 

defined in Eqs. (51) and (54). The simulation results 
obtained reveal that the trajectory of the master finance 
system depicted in Figure 2, is bounded, the time series of 

finance system is shown in Figure 8 and the error 
dynamics shown in Figure 9 oscillate chaotically with time 
when    the     two    systems    are   decoupled.  The   partial  
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Figure 10. Average error, 𝐸𝐴𝑣, as a function of (a) time for the uncoupled systems (b) 

coupling strength, 𝑘 with the following parameters: 𝑎 = 0.9, 𝑏 = 0.2, 𝑐 = 1.2, 𝑑 =
0.2 𝑎𝑛𝑑  𝑒 = 0.17 respectively. 

 
 
 

 
 

Figure 11. Time response of the global synchronization error of the coupled hyperchaotic systems with the coupling 

strength (a) 𝐾 = 𝑑𝑖𝑎𝑔{1.0,1.0,1.0,1.0}  
 
 
 

variables 𝑥1, 𝑥2, 𝑥3 and 𝑥4 of the chaotic attractor satisfy 

𝑥1(t) = −𝑐𝑥3(t) < 1 for any t ≥ 0.  
In Figure 10, we displayed a simulation result of average 

error, 𝐸𝑎𝑣𝑒, against coupling, 𝑘, and noticed that as 𝑘, 
increases and as full synchronization is approached, 
𝐸𝑎𝑣𝑒→ 0 asymptotically at the threshold coupling, 𝑘𝑡ℎ ≈
2.0. Then for all 𝑘 > 𝑘𝑡ℎ, 𝐸𝑎𝑣𝑒 = 0 and remains stable as t 
→ ∞ implying that the oscillators are completely 
synchronized. Interestingly, we noticed that by direct 

calculations of Eq. (51) for the control matrix, 𝐾 =
𝑑𝑖𝑎𝑔{𝑘, 𝑘, 𝑘, 𝑘}, 𝑘 > 𝑘𝑡ℎ = 1.0. Thus, the obtained criterion 
is in good agreement with numerical simulation result. 
Using the criterion defined by Eq. (51), one readily obtains 
a coupling matrix 𝐾 = 𝑑𝑖𝑎𝑔{1.0,1.0,1.0,1.0} by which the 
master-slave system (30) achieves chaos synchronization. 
Figure 11 shows the synchronization for 𝑘 = 1.0. Finally, 
we depict the simulation results for the second case in 
which we choose constant control matrix 𝐾 =  𝑑𝑖𝑎𝑔{𝑘, 0,0,0},
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Figure 11 Contd. Time response of the global synchronization error of the coupled hyperchaotic 
systems with the coupling strength  (𝑏) 𝐾 = 𝑑𝑖𝑎𝑔{4.2,0,0,0}. 

 
 
 

such that 𝑘 > 4.2 satisfies the condition in Eq. (54). The 
simulation results displayed in Figure11 confirmed that 
complete synchronization is achieved for 𝑘 = 4.2 > 𝑘𝑡ℎ. 
Notice that in both cases, the synchronization is already 
reached at t = 20, showing an excellent transient 
performance. 
 
 
Conclusions 
 
In this paper, an analytical method based on Lyapunov 
stability theory and linear matrix inequality has been 
utilized to examine the stability of synchronized dynamics 
and determine the threshold coupling, 𝑘𝑡ℎ, at which stable 
synchronization regime could be observed in master-slave 
parametrically chaotic (3D) and hyperchaotic (4D) finance 
systems. However, synchronization provides that a low 
dimensional financial system adapts to the global financial 
system.  Instant variations such as price and interest rate 
are the main factors of demand and volume changes, and 
these variations lead to nonlinearity in a system. 
Therefore, synchronization to the global finance system 
utilizes some benefits to economic growth on account of 
obtaining the same interest rate, investment demand and 
price exponent and also reduces the asymmetrical 
economic risks. The 3D and 4D finance dynamic 
behaviour has been thoroughly featured through phase 
portraits and Lyapunov exponents’ diagrams. Based on 
the criteria utilized, the coupling strength, 𝑘𝑡ℎ for both 3D 
and 4D finance systems, by direct calculation was 
obtained to be approximately 1.0 and 5.0 respectively for 
both cases of threshold coupling, which also justify the 
range of values of coupling strength 𝑘𝑡ℎ according to 
control theorem. The 3D and 4D systems synchronise 
perfectly as it can be seen in Figures 6 (b) and 10 (b) 
respectively. The criteria obtained in this paper are in 

algebraic form and could be easily employed for designing 
the feedback control gains that would guarantee complete 
and stable synchronisation. Finally, numerical simulation 
results to verify the effectiveness of the obtained criteria 
were presented. 
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