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ABSTRACT: In this present study, the radial Schrödinger equation is solved analytically with Varshni potential model 
using the Nikiforov-Uvarov method. The energy equation and corresponding wave function were obtained. The analytical 

energy expression was used to predict the mass spectra of heavy quarkonia such as charmonium cc and bottomonium

bb . Also, the thermodynamic properties such as free energy, mean energy, entropy, and specific heat were obtained. The 

results obtained with the present model agree excellently with experimental data and the work of other researchers with 

a maximum error of 0.0055 GeV  . 
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INTRODUCTION 
 
The investigation of thermodynamic properties is 
significant in various areas of physical and chemical 
science. This is made conceivable through the solutions of 
the Schrödinger equation (SE), which contain all the 
essential data to portray the quantum system under 
investigation. This area of physics plays a fundamental 
part in high-energy physics (Florkowski et al., 2004). The 
thermodynamic properties play a fundamental part in 
portraying quark-gluon plasma, where the thermodynamic 
properties of heavy quarks are determined with respect to 
the strange quark matter (Modarres and Mohamadriejad, 
2013). The distribution function needed to determine the 
thermodynamic properties of any physical system is the 
partition function (Ikot et al., 2016; Ikot et al., 2018). The 
solution of the SE with spherically symmetric potentials is 
of major concern in portraying the mass spectra of heavy 
quarkonia such as bottomonium and charmonium (Anisiu, 
2015). The potential commonly utilized in simulating the 
interaction for this system is the confining-type potential. 
For example, a variety of this type of potential is the 

alleged Cornell potential or Killingbeck potential with two 
important terms, of Coulomb interaction and confinement 
of the quarks, respectively (Mocsy, 2009). 

Numerous researchers have solved both exact and 
approximate solutions of SE utilizing diverse insightful 
methods with potentials to obtained thermodynamic 
properties of some physical systems (Abu-Shady et al., 
2019; Okorie et al., 2018; Oyewumi et al., 2014; Ali et 
al., 2020; Song et al., 2017; Jia et al., 2017; Ikot et al., 
2019; Lutfuoglu, 2018). More so, most researchers have 
obtained the mass spectra of heavy mesons with the 
Cornell and extended Cornell potentials (Vega and Flores, 
2016; Ciftci and Kisoglu, 2018; Abu-Shady, 2015; Mutuk, 
2018; Al-Oun et al., 2015; Inyang et al., 2020c; Mansour 
and Gamal, 2018; Ibekwe et al., 2020; Abu-Shady and 
Ikot, 2019). Recently, most researchers have carried out 
the study of mass spectra with exponential-type potentials. 
For instance, Inyang et al. (2021a) obtained the mass 
spectra with Yukawa potential using the Nikiforov-Uvarov 
(NU) method both in relativistic and non-relativistic regime.  
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More so, Akpan et al. (2021) obtained the mass spectra of 
heavy mesons in the non-relativistic model with Huthern-
Hellmann potential using the NU method. Furthermore, 
Inyang et al. (2021i) solved the Klein-Gordon equation 
analytically via the NU method to obtained the energy 
eigenvalues and corresponding wavefunction in terms of 
Laguerre polynomials with the ultra generalized 
exponential–hyperbolic potential. The results were applied 
for calculating the mass spectra of heavy mesons such as 

charmonium ( cc ) and bottomonium ( bb ) for different 

quantum states. Also, Ibekwe et al. (2021) solved the SE 
with screened Kratzer potential using the series expansion 
method. The results were used to obtain the mass spectra 
of heavy mesons. In addition, Inyang et al. (2020a) solved 
the Schrödinger equation via the series expansion method 
with class of Yukawa potential to calculate the mass 
spectra of heavy mesons.  The Varshni potential takes the 
form of Varshni (1957). 
 

( )
rabe

V r a
r

−

= −                    (1)  

 

where a   and b  are potential strengths,   is the 

screening parameter which controls the shape of the 
potential energy curve as shown in Figure 1 and r  the 
inter-nuclear separation. The Varshni potential is a short 
range potential with applications cutting across nuclear 
physics, particle physics and molecular physics 
(Oluwadare and Oyewumi, 2017). This potential is utilized  
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Figure 1. Plots of Varshni potential with r in (fm-1). 
 
 
 

for the most part to depict bound states interaction of the 
systems (Lim and Udyavara, 2009).  Therefore, this 
present study aim is in three folds. First, to model the 
Varshni potential to behave like the Cornell potential, 
thereafter obtain the solutions using the NU method and 
finally to calculate the mass spectra and thermodynamic 
properties of heavy quarks in which the quarks are 
considered as spineless particles for easiness.

 
 
METHODOLOGY 

 
Approximate solutions of the Schrödinger equation with Varshni potential   

 
The SE takes the form (William et al., 2020; Ekpo et al., 2020; Inyang et al., 2020b; Obu et al., 2020):  
 

( )
( )2

2 2 2

1U( ) 2
( ) U( ) 0nl

l ld r
E V r r

dr r

 + 
+ − − = 
         (2) 

 

 

where , ,l r  and   are the angular momentum quantum number, the reduced mass for the quarkonium particle, inter-

particle distance and reduced plank constant respectively. 

  
Equation (1) is model to interact in the quark-antiquark system by carrying out series expansion of the exponential term 

and ignoring terms from 
3r , this yield 

 

2 3 21 r
...

2 6

re r

r r

  


−

= − + − +          (3) 

 
We substitute Eq. (3) into Eq. (1) and obtain 
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2( )
B

V r Cr Dr A
r

= − − + +           (4) 

 
Where 
  

2 3

,

,
2 6

A a ab B ab

ab ab
C D



 

= + = 



= = 


           (5) 

 
Upon substituting Eq. (4) into Eq. (2), we obtain 

 
2 2

2 2 2 2 2 2 2

2U( ) 2 2 2 2 ( 1)
U( ) 0nlEd r B Cr Dr A l l

r
dr r r

     +
+ + + − − − = 
 

     (6) 

 
Transforming the coordinate from r  to y   in Eq. (6), we set 

 

1
y

r
=              (7) 

 
Therefore, the 2nd derivative in Eq. (7) becomes; 
 

2 2
3 4

2 2

U(r) (y) U(y)
2

d dU d
y y

dydr dy
= +          (8) 

 
Substituting Eqs. (7) and (8) into Eq. (6) we obtain 
 

2
2

2 2 4 2 2 2 2 2 2

2U(y) 2 (y) 1 2 2 2 2
( 1) U(y) 0,nlEd y dU By C D A

l l y
dydy y y y y

     
+ + + + − − − + = 

 
 (9)                                                         

  

We suggest the approximation proposal on 
C

y
 and 2

D

y
terms with the assumption that there is a characteristic radius 𝑟0 

of the meson. Then the proposal is based on the expansion of
C

y
 and 2

D

y
  in a power series around 0r ; i.e. around

0

1

r
  , up to the second order. This is similar to Pekeris approximation, which helps to distort the centrifugal term (Abu-

Shady, 2016). 
 

Setting s y = − and around 0x =  it can be expanded into a series of powers as; 

 
1

1

1

C C C C s

sy s   




−

 
= = = + 

+    
+ 

 

         (10) 

 
which yields 



Inyang et al.        95 
 
 
 

2

2 3

3 3C y y
C

y   

 
= − + 

 
           (11) 

 
Similarly, 
 

2

2 2 3 4

6 8 3D y y
D

y   

 
= − + 

 
           (12) 

 
By substituting Eqs. (11) and (12) into Eq. (10), we obtain 
 

2
2

2 2 4

U(y) 2 (y) 1
U(y) 0

d y dU
y y

dydy y y
   + + − + − =         (13) 

 
Where 
 

( )

2 2 2 2 2 2 2 2 2 3

2 3 2 4

2 2 6 12 2 2 16
,  

2 6
,  1

nlE A C D B C D

C D
l l

      
 

   

 
  

 

   
− = − + − = − +  

  


  = − + = +    

     (14) 

 
By comparing Eq. (13) and Eq. (A1) we obtain 
 

2

2

(y) 2 ,  (y)

(y)

(y) 2 ,  (y) 2

y y

y y

y

 

   

 

= =


= − + − 
 = =


           (15) 

 
We substitute Eq. (15) into Eq. (A9) and obtain 
 

( ) 2(y) y k y   =  − + +           (16) 

 

The value of k  is calculated from the function under the square root in Eq. (16), which yield. 

 
2 4

4
k

 



−
=            (17) 

 
By substituting Eq. (17) into Eq. (16) we have 
 

(y)
2

y 


 

 
=  − 

 
          (18) 

 
Taking the negative part of Eq. (18) and differentiating, yields 
 

(y)
2





−
 = −             (19) 
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Substituting Eqs. (15) and (18) into Eq. (A7) we have 

 

2
(y) 2

y
y

 


 
= − +            (20) 

 
Differentiating Eq. (20) gave Eq. (21) 

 

(y) 2





 = −             (21) 

 
Using Eq. (A10),  

 
2 4

4 2

  


 

−
= −            (22) 

 
And from Eq. (A11), we have 

 

  

2

n

n
n n





= − −            (23) 

 
Equating Eqs. (22) and (23), the energy eigenvalue of the Varshni potential is obtain as,  

 

( )

2

2 3

3 3 2 2 2 2 2 2

3 2 3 3

3 2 2 4

2 3 16

3 61
2 8 1 1 16

2 2 6

nl

ab ab ab

ab ab
E a b

ab ab
n l

    

   
    

 

 
 − +
 

= + − + −  
  

+ + + − +    

    

(24) 

 
The wave function is determined by substituting Eqs. (15) and (18) into Eq.(A4) which gives, 

 

2 2

d
dy

y y

  

  

 
= − 
 

         (25) 

 
By integrating Eq. (25), we obtain 

 

2(y) yy e




−−

=            (26) 

 
Upon substituting Eqs. (15) and (18) into Eq.(A6) and integrating, thereafter simplify to obtain 

 
2

(y) yy e




−−

=            (27) 

 
Substituting Eqs. (15) and (27) into Eq. (A5) gave, 
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2 2
2

(y)
n n

y y

n n n

d
B e y e y

dy

  

  
− − 

=  
  

        (28) 

 
The Rodrigues’ formula of the associated Laguerre polynomials is 

 
2 2

22 1

!

n n
y y

n n

d
L e y e y

n dyy

   

   



− −  
=   

 
   

       (29) 

 
Where 

 
1

!
nB

n
=              (30) 

 
Hence, 

 

2
(y)n nL

y



 




 
  

 
           (31) 

 
Substituting Eqs. (26) and (31) into Eq. (A2), we obtain the wave function of Eq. (6) in terms of Laguerre polynomial as 

 

2
2

(y) y

nl nN y e L
y

 

 





−−  
=  

 
         (32) 

 
Where 

 

nlN is normalization constant, which can be obtain from 

 

2

0

| ( ) | 1nlN r dr



=            (33) 

 
 
Thermodynamic properties of the Schrödinger equation with Varshni potential  

 
Thermodynamic properties of Varshni potential can be obtain from the partition function by using Eq. (24), which reduces 
to 

 

( )

2
2

2

1
8

nl

P
E P

n 

 
= −  

+ 
        (34) 

 

where, 

 
2 3 3

2 3 2 4

1 1 16

2 2 6

ab ab
l

 


 

 
= + + − + 

 
         (35) 
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( )
3 3

1 3

3
1

2

ab ab
P a b

 


 
= + − +           (36) 

 
2 3

2 2 2 2 2 2

2 3 16

6

ab ab ab
P

  

 
= − +           (37) 

 
 
Partition function ( )Z   (Abu-Shady et al., 2019) 

 
The partition function takes the form, 
 

0

( ) nlE

n

Z e


 −

=

=             (38) 

 
where, 
 

1

KT
 =              (39) 

 

where K  is the Boltzmann constant,T  is the absolute temperature, n  is the principal quantum number, 0,1,2,3...n =

and   is the maximum or upper bound quantum number. 

 
Substituting Eq. (34) into Eq. (38) we obtain 
 

( )

2
2

2
1

8

0

( )

P
P

n

n

Z e

  



  
 − −  
 +   

=

=          (40) 

 

In the classical limit, at high temperatureT , the sum is replaced by an integral, 

 

1 2

0

( )

N
M

Z e d

 
 

+

= 
          

(41) 

 
where, 
 

n  + =
            

(42) 

 

1 1M P= −
            

(43) 

 
2 2

2

8

P
N


=

            

(44) 

 
Integrating Eq. (41) we obtain the partition function as, 
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2

1

2 2
1

( ) 2
2

N

M

N
e N erfi

Z e N
N








  


  



  
−  

   
= − 

 
 
 

     (45) 

 

And the imaginary error function (y)erfi  is defined as follows (Okorie et al., 2018), 

 

2

0

( ) 2
(y) .

y

terf iy
erfi e dt

i 
= = 

        

  (46) 

 
 

Mean energy ( )U  (Abu-Shady et al., 2019)
 

 

( ) ( ),U InZ 



= −


           (47) 

 

Substituting Eq. (45) into Eq. (47) gave, 
 

1

1 1

1

1

1 1 2

1

1

14

2

( )

M

M M

M

e N

M e N e N
N

U
e N



 



 





 
 

 + +  
 
 

= −


       (48) 

 

where, 
 

2

1

2 2

2

N
N

e N erfi

N






  





 
−  

 
 

 = −         (49) 

 

( ) ( )

2

3

2

2 3 32
2 2

N
N N

N erfi N erfi
e N

NN N





 
  

 

 

   
   
   
   

 = − − +      (50) 

 
 

Free energy F( )  
 

( ) ln ( )F KT Z = − (Abu-Shady et al., 2019)
        

 (51)
 

 

We substitute Eqs. (39) and (45) into Eq.(51) and obtain 
 

2

1

2 2
1 1

( ) ln 2
2

N

M

N
e N erfi

F e N
N








  


  

 

   
 −  

    
= − −  

  
  

  

    (52) 
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Entropy S( ) (Abu-Shady et al., 2019)

 
 

( ) ln ( ) ln ( )S K Z K Z   



= −


         (53) 

 
We substitute Eqs. (45) and (48) into Eq.(53) and obtain 
 

2

1

1

1 1

1

1

1 1 2

1

2 2
1

( ) ln 2
2

1

14

2

N

M

M

M M

M

N
e N erfi

S K e N
N

e N

M e N e N
N

K
e N









 




  


  



 





   
 −  

    
= −  

  
  

  

 
 

 + +  
  
 

−


    (54) 

 
 
Specific heat C( ) (Abu-Shady et al., 2019)

 
 

2( )
U U

C K
T

 


 
= = −
 

          (55) 

 
Substituting Eqs. (49) and (51) into Eq. (48) and then substitute into Eq. (55) we obtain 
 

( )

( )

2

1

2
1

2

1

2 2
1 1

1

2 1

1 1

1
2

3 2

2

2

1 1

1

2
2 2

2

1

2
2 2

1 1

4 2 3

1
( )

N

M

N

M

N

M

N N

M M

Ne
M e erfi N

N
M e e

M
N

Ne
e erfi N

N
e e e Ne

N

C K M








 






 

  


 










 







  


  
   

− −    
    

+ − 
 
 

     − −      
  
− + − 
  

= − − +

( )

2
1

2
1

1

2
1

2

2

2

1

3

2

1 1

2

1 2 1
2 2

2 4 2
1

2

N

M

N

M
M

N
NM

e e

Ne e
M e N erfi N

N

e e
M e



 







 



 



 
  

 


 

 


 
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
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  

−  
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    
     

− − + −      
         −
   
  + 

+ + −   
     
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
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
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   (56) 



Inyang et al.        101 
 
 
 
Where 
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      (57) 
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2

1

2

2

3

2
2 2

N
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N




 

   
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 
  

= − −   
  
 

       (59) 

 
Also, the mass spectra of the heavy quarkonia such as charmonium and bottomonium using the relation (Inyang et al., 
2021b; Inyang et al., 2021c) was calculated. 
 

2 nlM m E= +            (60) 

 

where m  is quarkonium bare mass, and nlE  is energy eigenvalues. By substituting Eq. (24) into Eq. (60) we obtain the 

mass spectra for Varshni potential as: 
 

( )

2

2 3

3 3 2 2 2 2 2 2

3 2 3 3

3 2 2 4

2 3 16

3 62 1
2 8 1 1 16

2 2 6

ab ab ab

ab ab
M m a b

ab ab
n l

    

   
    

 

 
 − +
 

= + + − + −  
  

+ + + − +    

  (61) 

 
 
RESULTS AND DISCUSSION 
 
In the calculation, the heavy quark masses were chosen 

as 4.680 GeV and 1.488  GeV , for bottomonium and 

charmonium respectively (Barnett et al., 2012). The 

corresponding reduced mass are b =  2.340 GeV  and 

c = 0.744 GeV . The values of the potential parameters 

of Eq. (61) for the different mesons are fixed by fitting the 
experimental data. Experimental data is taken from 
Tanabashi et al. (2018). 

The mass spectra of heavy mesons was calculated in 
comparison with experimental data and recent theoretical 
works (Inyang et al., 2021a; Inyang et al., 2021i) in which 

they used different models as presented in Tables 1 and 
2. It was noted that there was an improvement with the 
present model. In order to test for the accuracy of the 
predicted results determined analytically, a Chi square 
function was used to determine the error between the 
experimental data and theoretical predicted values. The 
maximum error in comparison with the experimental data  

is found to be 0.0055 GeV . 

The thermodynamic properties were obtained by first 
obtaining the partition function. Figure 2 show that the 
partition function ( )Z   decreases exponentially with 

increasing temperature   for different values of 

maximum quantum number  , then later increases with 

increasing temperature which is the same  as  reported  by
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Table 1. Mass spectra of charmonium in (GeV) (m 1.488c =  GeV , 0.744 =  GeV   

0.976,  1.700 ,  1, 48.049 GeV a GeV = − = = = −  and 3.020b = . 

 

State Present work Abu-Shady (2016) 
Inyang et al. 

(2021a) 
Experiment 

(Tanabashi et al., 2018) 

1S 3.096 3.096 3.096 3.096 

2S 3.686 3.686 3.686 3.686 

1P 3.524 3.255 3.527 3.525 

2P 3.768 3.779 3.687 3.773 

3S 4.040 4.040 4.040 4.040 

4S 4.264 4.269 4.360 4.263 

1D 3.683 3.504 3.098 3.770 

2D 3.989 - 3.976 4.159 

1F 3.862 - 4.162 - 
 
 
 

 Table 2. Mass spectra of bottomonium in (GeV) (m 4.680b =  GeV , 2.340 =  GeV ,

0.952,  1.70 ,  1, 14.352 GeV a GeV = − = = = −  and 3.084b =  )GeV . 

 

State Present work Abu-Shady (2016) 
Inyang et al. 

(2021a) 
Experiment (Tanabashi 

et al., 2018) 

1S 9.460 9.460 9.460 9.460 

2S 10.023 10.023 10.023 10.023 

1P 9.789 9.619 9.661 9.899 

2P 10.243 10.114 10.238 10.260 

3S 10.355 10.355 10.355 10.355 

4S 10.579 10.567 10.567 10.580 

1D 9.998 9.864 9.943 10.164 

2D 10.307 - 10.306 - 

1F 10.223 - 10.209 - 
 
 
 

 
 

Figure 2. Variation of the partition function ( )Z  versus temperature (  ) for different 

values of maximum quantum number ( ). 
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Figure 3. Variation of the mean energy ( )U   versus temperature (  ) for 

different values of maximum quantum number ( ). 
 
 
 

 
 

Figure 4. Variation of the specific heat C( )  versus temperature (  ) for 

different values of maximum quantum number ( ). 
 
 
 

Abu-Shady et al. (2019), the authors studied the thermo-
dynamic properties  of a heavy quarkonium system using 
the NU method. The plot of mean energy ( )U    with 

different values of   and  is shown in Figure 3. It 

depicts a monotonic increase and then decreases with 

increase values of   and . Figure 4 show the plot of 

specific heat ( )C  . It is seen to increase monotonically as 

  increases and then decreases as   and    increases
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Figure 5. Variation of the free energy F( )  versus temperature (  ) for 

different values of maximum quantum number ( ). 
 
 
 

 
 

Figure 6. Variation of the entropy S( )  versus temperature (  ) for 

different values of maximum quantum number. 
 
 
 

with each plot converging. The free energy ( )F   is plotted 

as shown in Figure 5. The free energy is seen to decrease 

exponentially as   and   increases and converges at 

a point close to zero. The plot of entropy ( )S    as a 

function of temperature   and maximum quantum 

number   is shown in Figure 6. It was noted that the 

entropy decreases with increasing  . This finding is in 

agreement   with    Okorie    et    al.   (2018)   in   which  the 



 
 
 
 
entropy increases with increasing temperature for the 
system. 
 
 

Conclusion  
 
In this work, the Varshni potential was modeled to interact 
in the quarkonium system. The Schrödinger equation was 
broken down with the modeled potential using the NU 
method for energy eigenvalues and the corresponding 
eigenfunction in terms of Laguerre polynomials. The 
present results were applied to compute mass spectra of 
heavy quarkonia such as charmonium and bottomonium 
for different quantum states. The results agree with 
experimental data and shows an improvement from recent 

theoretical studies with a maximum error of 0.0055 GeV
. The thermodynamic properties such as free energy, 
mean energy, entropy, and specific heat and their plots 
were also obtained.  
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APPENDIX 

 
Review of Nikiforov-Uvarov (NU) methods 

 
The NU method (Nikiforov and Uvarov, 1988; Ntibi et al., 2020; Okoi et al., 2020; Edet and Okoi, 2019; Inyang et al., 
2021d; Inyang et al., 2021e; Inyang et al., 2021f; Inyang et al., 2021g; Inyang et al., 2021h; Inyang et al., 2021i; Nwabuzor 
et al., 2021) is used to solve the second-order differential equation which takes the following form: 

 

( )
( )

( )
( )

( )

( )
( )

2
0

y y
y s y

y y

 
  

 
 + + =        (A1) 

 

where ( ) ( ) and y y  are polynomials of maximum second degree and ( )y  is a polynomial of maximum first degree. 

The exact solution of Eq. (2) takes the form 

 

( ) ( ) ( )y y y  =           (A2) 

 
Substituting Eq. (3) into Eq. (2), we obtain 

 

( ) ( ) ( ) ( ) ( ) 0y y y y y     + + =        (A3)     

 

Where the function ( )y  satisfies the following relation 
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y y

y y
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=           (A4) 

 

And ( )y
 
 is a hypergeometric-type function, whose polynomial solutions are obtained from the Rodrigues relation  
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where nB
 
is the normalization constant and ( )y the weight function which satisfies the condition below;  

 

( ) ( )( ) ( ) ( )
d

y y y y
dy

   =         (A6) 

 
Where also  
 

( ) ( ) ( )2y y y  = +          (A7) 

 
For bound solutions, it is required that 
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d y
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We can then obtain the eigenfunction and eigenvalues using the definition of the following function ( )y  and parameter 

λ, given as: 
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2 2

y y y y
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    (A10) 

 
And 
 

( )k y  = +           (A11) 

 

The value of k  can be calculated if the function under the square root in Eq. (10) is the square of a polynomial. This is 

possible if its discriminate is equal to zero. As such, the new eigenvalues equation can be given as 
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