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ABSTRACT: In this study, a conventional quantum mechanics in which the potential function is not specified but replaced 
by specifying four parameters Wilson-Racah orthogonal polynomials in the energy and physical parameter space was 
presented. The wave function is written as a bounded sum of elements of a complete basis with these polynomials as 
expansion coefficients. By finding the asymptotic of these Wilson – Racah polynomials, the physical properties of the 
corresponding system (wave function, bound state energy spectrum and/or scattering phase shift) was obtained. Wilson 
– Racah quantum system was applied to determine the thermodynamics and atomic properties of Hydrogen atom and 
diatomic molecules. All properties of associated physical systems are obtained directly and simply from the asymptotic of 
the associated orthogonal polynomials. This new model, gives good an approximate prediction of the Hydrogen atom 
energy with an estimated average error of 0.125%. The proposed procedure merely relies on experimental values of five 
molecular constants. The average relative percentage deviations of the thermodynamic properties’ functions Q, U, C, S 
and F which are 2.42, 0.45, 0.30, 1.23 and 1.50% satisfied the experimental finding as ascertained. These represent 
satisfactory compromise between accuracy and rapid computations.  
 
Keywords: Energy spectrum, Hydrogen like–atoms, orthogonal polynomial, Wilson–Racah quantum system, 
Thermodynamics functions. 
 
 
INTRODUCTION 
 
Wilson-Racah Quantum system (WRQs), Hydrogen atom 
and diatomic molecules constitute most fundamental and 
intriguing phenomena in nature. A simple one-dimensional 
model of a diatomic molecule that can explain all the 
essential features of a real two particle quantum 
mechanical system and gives quantitative results in fair 
agreement with those of a hydrogen molecule was 
introduced by Nielsen (1978). Recently, electron transport 
through a diatomic molecular tunnel junction shows wave 
like interference phenomenon by using Keldysh non-
equilibrium Green's function (NEGF) theory (Imran, 2012), 
current and differential conductance calculation for 

a diatomic molecular and two isolated atoms (two atoms 
having zero hybridization between their energy orbitals) 
tunnel junctions were presented. The vibrational matrix 
elements and expectation values for a diatomic molecule, 
including the rotational dependence, are calculated for 
powers of the reduced displacement in terms of the 
parameters of the Dunham potential-energy function 
(Bouanich and Ogilvie, 1986). O’Esquivel et al. (2011) 
investigated quantum entanglement-related aspects of the 
dissociation process of some selected, representative 
homo- and hetero- nuclear diatomic molecules and the 
study was based upon high-quality ab initio calculations of  
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the (correlated) molecular wavefunctions involved in the 
dissociation processes. 

Using a recent formulation of quantum mechanics 
without a potential function, Alhaidari and Taiwo (2017) 
presented a four-parameter system associated with the 
Wilson and Racah polynomials. The continuum scattering 
states are written in terms of the Wilson polynomials 
whose asymptotics give the scattering amplitude and 
phase shift. On the other hand, the finite number of 
discrete bound states are associated with 
the Racah polynomials. As the second stage of the project 
multi-indexed orthogonal polynomials, Odake and Sasaki 
(2012) presented in the framework of ‘discrete quantum 
mechanics’ with real shifts in one dimension, the multi-
indexed (q-) Racah polynomials which are obtained from 
the (q-) Racah polynomials by the multiple application of 
the discrete analogue of the Darboux transformations or 
the Crum-Krein-Adler deletion of ‘virtual state’ vectors, in a 
similar way to the multi-indexed Laguerre and Jacobi 
polynomials reported earlier. The virtual state vectors are 
the ‘solutions’ of the matrix Schrodinger equation with 
negative ‘eigenvalues’, except for one of the two boundary 
points. Technically, Mironov and Morozov (2016) 
developed together the universality and the "eigenvalue 
conjecture", which expresses the Racah and mixing 
matrices through the eigenvalues of the quantum Racah-
matrix, and for dealing with the adjoint polynomials that 
has to extended to the previously unknown 6 Ã— 6 case. 
Next step was reported in the program of Racah matrices 
extraction from the differential expansion of HOMFLY 
polynomials for twist knots (Morozov, 2018): from the 
double-column rectangular representations R = (rr) to a 
triple-column and triple-hook R = (333). A formulation of 
quantum mechanics based on orthogonal polynomials was 
presented by Alhaidari (2020). The wavefunction is  

 
 
 
 
expanded over a complete set of square integrable basis 
in configuration space where the expansion coefficients 
are orthogonal polynomials in the energy. Information 
about the corresponding physical systems (both structural 
and dynamical) are derived from the properties of these 
polynomials. In order to establish a correspondence 
between the reformulation of quantum mechanics without 
potential function and the convention quantum mechanics, 
Taiwo (2020) obtained the potential function of the New 
(WRQs) in Alhaidari and Taiwo (2017) using any of the 
proposed formula in Morozov (2018). To achieve this, he 
used the matrix elements of the potential function and the 
basis element of the configuration space. 

In this present work, a model of the four-parameter 
Wilson orthogonal polynomialwas solved base on 
Alhaidari (2017) and then incorporate it into the new WRQs 
that enable the bound states energies from the energy 
spectrum formula given by Alhaidari and Taiwo (2017) to 
be obtained. The objective of this study is twofold: to test 
the validity of the energy spectrum of the WRQs, by using 
the experimental values of the hydrogen parameters in the 
energy spectrum of the WRQs and see its predictions; and 
to apply the energy spectrum of the WRQs to find the 
thermodynamic properties of diatomic molecules – Lithium 
(Koekoek and Swarttouw, 1998). Moreover, the new 
energy spectrum of this study was used in place of the 
vibrational energy level belonging to the improved 
Manning – Rosen potential and thus determine the 
thermodynamic properties function using vibrational 
energy levels available to the system. Further, the two sets 
of energy spectrum of the WRQs with the energy spectrum 
in Taiwo (2020) and the thermodynamics experimental 
values in Peng et al. (2018) were compared to validate the 
results in this study. 

 
 
THEORETICAL FRAMEWORK 
 
This section considered the orthogonality of energy spectrum in WRQs that represents the potential wave function in 
quantum mechanical system. It answered the question how the deformation of the obtained potential function of the New 
WRQs affects the energy spectrum of the particle by presenting Alhaidari and Taiwo (2017) using any of the proposed 
formula in Alhaidari (2017) to the consideration of the energy spectrum of Hydrogen atom and the thermodynamic 
properties of diatomic molecules – Lithium. 

 
 
Wilson – Racah orthogonal polynomial 

 

The four parameters Wilson orthogonal polynomial ( )2 ; ; ,nW y v a b
 as defined by Koekoek and Swarttouw (1998) is 

given as;      
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The generating function of these polynomials is 
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Their three-term recursion relation ( )1,2,3...,n =  give rise to (A1), and the initial seeds ( )0n =  for this recursion at 

0 1W  =   
and the result of 𝑊̃1

𝜇
 is shown by (A2). 

 
The orthogonality relation of the polynomial is 
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The normalized weight function is 
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In this study, it was observed that if all parameters are positive, there will be no bound states. However, if 0   and 

v + , a + , b +  are positive or pair of complex conjugates with positive real parts, then the polynomial will 

have a continuum spectrum as well as a finite size discrete spectrum and the polynomial satisfies the following generalized 

orthogonality relation (Koekoek and Swarttouw, 1998) in (A3) where ( ) ( )( )2
; , , ; , ,n nW m v a b W m v a b   − +  and N is 

the largest integer less than or equal to −  . The orthonormal version of this polynomial in (A4) gives results of the three 

– term recursion relation for the orthonormal version in (A5). 
In order to derive the asymptotic formula for the Wilson polynomial, Darboux’s method was used to its generating 

function eq. (2) as prescribed by Oliver (1974).  With all parameters real and 0y  , the contiguous relation was employed. 
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the Euler transformation 
 

( )2 1 2 1

, ,
1

c a ba b c a c b
F z z F z

c c

− −   − −
= −   

   
       (6) 



 
4        Appl. J. Phys. Sci. 
 
 
 
and finally, the Gauss sum 
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Now using eq. (7) and the first term on (R.H.S) in eq. (2), we have  
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Applying the Euler transformation eq. (6) to write the first term inside the square bracket in eq. (8), gives 
 

( )( )
2

2 1

1 ,
1

iy v iy iy
u iy t F t

v





−  − − −
+ −  

+ 
.  

 
This shows that the dominant term in a comparison function for this factor is 
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We now use the Gauss Sum eq. (7), to evaluate the hypergeometric function 2 1F  at 1t =  in eq. (9), as 
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where ( ) ( ) ( )arg 2iy iy v iy =   +  +   .  Repeating the same procedure on the second 2 1F  on the right side of the 

generating function in eq. (2), we have same result as (A6) but we now use parameter replacement y y→− , a →  and 

v b→  giving 
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where ( ) ( ) ( )arg 2iy a iy b iy =   +  +   .   

 

Multiplying (A6) by eq. (10), we have  
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From eq. (11), the comparison function near 1t =  is ( )
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in (11), hence we have 
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Using the results of Wilson’s work in Wilson (1991) and those in Taiwo (2020), we obtain the following asymptotic (𝑛 → ∞) 
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where ( ) ( ) ( ) ( ) ( ) ( )2A iy iy iy v iy a iy b iy=   +  +  +  +  is the scattering amplitude. Hence the asymptotic of 

the orthonormal version of the polynomial will be  
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Remember, in this reformulation, the existence of bound states dictates that the scattering amplitude ( )A iy  vanishes 
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becomes the Racah polynomial. Using this in the Wilson polynomial changes it to become the discrete Racah Polynomial 

defined by Koekoek and Swarttouw (1998) in (A7), where ( )1 1a  = + −  − , ( )1 1b  = + −  − ,
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takes the Racah polynomial back to the Wilson 

Polynomial. Also, the generating function of the Racah polynomial as obtained from eq. (2) using the parameter map 
giving 
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Which is the formula in Koekoek and Swarttouw (1998), and the three - term recursion relation is  
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The discrete orthogonality relation for the Racah polynomial is 
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Similarly like the Wilson polynomial, the discrete Racah polynomial has an orthonormal version defined as (A8) and (A9). 
 
 
Wilson – Racah Quantum System 
 

The equation Ψ(𝑡, 𝑥) = 𝑒𝑖𝐸𝑡 ℏ⁄ Ψ(𝐸, 𝑥) is a total wave function of a system and the associate Hamiltonian is 𝐻Ψ = 𝑖ℏ
𝜕

𝜕𝑡
Ψ =

EΨ. However, since a potential is unknown, H cannot be written in quantum mechanical convention as the sum of kinetic 
energy operator and a potential function. We will still observe all postulates, physical information about quantum 
mechanical system that are contained in the wavefunction. The energy polynomials {𝑃𝑛

𝑢(𝜀)} are specified and the basis 

set {𝜙𝑛(𝑥)} is chosen. The basis elements will be chosen as we go on, but now we select the four-parameter Wilson 
polynomial whose normalized version is shown in the Appendix as formula (A4). The corresponding normalized weight 

function is given by eq. (4). Comparing the asymptotic formula (A9) with Eq. (14) and noting that ( )ln n o n  for any 

0  , the scattering phase shift is                                                           
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the bound states energies are obtained from the energy spectrum formula ( )
22y m = − +  giving 

 

( )
2

2

2
mE m


= − +             (19) 

 
So the continuous orthogonality relation of the Wilson polynomial will now become (A3). The total wavefunction 

corresponding to the continuous energy   and discrete energy 
m  will be 
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( ) ( ) ( ) ( ) ( )( ) ( )
22

0 0

, ; ; , ; ; ,
N

N

m n n m n n

n n

E x W v a b x W m v a b x         


= =

= + − +     (20) 

 

where ( )   and 
N

m  are the continuous and discrete normalized wave functions as defined in (A3) and for this physical 

system, the basis elements are defined as ( ) ( )
2 21 2

22 !n x

n nx n e H x  
−

− =
 

, where x−     in the one 

dimensional coordinate. ( )nH x  is the Hermite polynomial of degree n.  Now, if the values of the physical parameters 

(in the Wilson Orthogonal Polynomial), are such that it is totally confined ( 0  ,1 0v  , 0a +   and 0b + 

), then only  bound states will exist and the mth wavefunction will wholly be written in terms of the discrete Racah polynomial 
as 
 

( ) ( ) ( ) ( )
0

, ; , , ; , ,
N

N N

m n n

n

E x m R m x        
=

=        (21) 

 

where ( ); , ,N m     and ( ); , ,N

nR m     are given as 

 

( )
( ) ( ) ( ) ( )

( ) ( ) ( )

1 1 12
; , ,

1 !

N m m m m

m m m

N Nm N
m

m N N N m

    
   

       

− + + − − ++ − −
=

+ − − − − − + − − −
 ( ) ( )

( ) ( )1 1

N N

N N

N N

N N

   

   

− − − − −

− − − − − − +  

 

And consequently (A8) is obtained. 

 
 
ATOMIC PROPERTIES OF HYDROGEN ATOM IN WILSON-RACAH QUANTUM SYSTEM 

 
A hydrogen atom is an atom of the chemical element hydrogen. This electrically neutral atom contains a single positively 
charged proton and a single negatively bound to the nucleus by the Coulomb potential force. By atomic spectroscopy, 
there exist discrete infinite set of states in which hydrogen (or any atom) can exist. As a result of this, the energy spectrum 
of Hydrogen atom is known. To test the validity of the energy spectrum of the Wilson Racah quantum system, we use the 
experimental values of the hydrogen parameters in the energy spectrum of the Wilson – Racah quantum system and see 
its predictions.   

 
In 3D the Schrodinger equation is 

 

[−
ℏ2

2𝑚
∇2 + 𝑉] 𝜓 = 𝐸𝜓  

 
And 

 

−
ℏ2

2𝑚
[

𝜕2𝜓

𝜕𝑥2 +
𝜕2𝜓

𝜕𝑦2 +
𝜕2𝜓

𝜕𝑧2 ] + 𝑉𝜓 = 𝐸𝜓                   (22)                

 

with sin cosx r  = , sin siny r  =  , and   cosz r = , all derivatives in terms of ( ), ,r   , makes eq. 22 

 

( )
2 2

2

2 2 2 2 2

1 1 1
sin

2 sin sin
r V r E

m r r r r r r r
   

  

        
− + + + =    

        

   (23) 

 

where  ( ), ,r   . Using separation of variable, we write ( ) ( ) ( ), , ,r R r Y    = in eq. (23), then we have   

8        Appl. J. Phys. Sci. 



 
 
 
 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2
2

2 2 2 2 2

2

1 1 1
, sin , ,

sin sin

2
, 0

r R r Y R r Y R r Y
r r r r r

m
V r E R r Y

      
    

 

       
+ +   

       

− − =  

  (24) 

 
Implies 
 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2
2

2 2 2 2 2

2

1 1 1
, sin , ,

sin sin

2
, 0

Y r R r R r Y R r Y
r r r r r

m
V r E R r Y

      
    

 

       
+ +   

       

− − =  

 (25) 

 

dividing through by ( ) ( ),R r Y    , multiplying by 
2r  and rearranging terms 

 

( )
( ) ( )

( )
( )

( )
( )

2

2

2

2 2

1 2 1
sin ,

, sin

1
, 0

, sin

m
r R r V r E Y

R r r r Y

Y
Y

  
    

 
   

         
− − +                 


+ =



  (26) 

 

 Introducing the separation constant  ( )1 = +  , where  is angular momentum, then we have 

 

 

( )
( ) ( )2

2

1 2d d m
r R r V r E

R r dr dr


  
− − =     

  

      (27) 

and 
 

( )
( )

( )
( )

2

2 2

1 1
sin , ,

, sin , sin
Y Y

Y Y
     

        

    
+ = −  

    

    (28) 

 
changing variables in (27) as ( ) ( ) ( ),Y    =   , then we have 

 
2

2 2

2

1 1
sin sin sin m   

  

    
− = +  = 
     

      (29) 

 

where m  is an arbitrary constant. Rearranging eq. (29) and writing eq. (27) again, we have the following equations: 

 
Azimuthal equation 
 

( )
( )

2

2

2
0m






 
+  =



         (30) 

 
Angular Momentum Equation  
 

2

2

1
sin 0

sin sin

m
 

  

  
+ −  = 

   

        (31) 

 

( )1 = +  with 0,1,2,...=  and , 1,..., 1,m= − − + −  
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Radial wave equation 
 

( )( ) ( )
2

2

2

1 2
1

d dR mr
r E V r R

R dr dr

 
+ − = + 

 

      (32) 

  
Now working with eq. (32) in order to get the energy spectrum for the Hydrogen atom, we use Coulomb potential function 
for hydrogen atom in eq. (32) 
 

( )
2

04

Ze
V r

r
= −

           (33) 

 

when 0=  we have 

 
2 2

0

2

2 4

Ze
R R ER

m r r

 
 − + − = 

 
        (34) 

 

Using  ( ) r aR r Ae−=  implies  r aA R
R e

a a

− = − = −   and 
2 2

r aA R
R e

a a

− = = ,  then eq. (34) becomes 

 

 2 2

0 0

1 2

2 4

Ze
E

m a ar r

 
− − − = 

 

          (35)    

 
Equation eq. (35) result to 
 

2
2 2 4 2

2 2 2 2 2

0 0

13.6

2 4 2 8

e e
n

e m m e Z
E Z ev

ma n n 

    −
= − = − = =   

  

     (36) 

 

where  
2

0
0 2

4
a

Ze m


=  is Bohr radius. To test the validity of the Wilson Racah energy spectrum, we use the parameters 

of the hydrogen atom in eq. (19) by taking 
 

4
2

2 2 2

0

1

4

me
n

n


 

 
= − 

 
 

          (37) 

 
then we have  
 

2
2 4

2

2 2 2

0

1

2 4
n

me
E n n

n



 

   
  = − + − 

      

        (38) 

 

This same phenomenon was observed for hydrogen like atoms (Helium He+ , Lithium 
2Li +

,  Beryllum 
3Be+

  and 

Boron 
4B +

 ) such the energy spectrum will be given  
 

2
2 2 4

2

2 2 2

0

1

2 4
n

Z me
E n n

n



 

   
  = − + − 

      

        (39) 
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THERMODYNAMICS PROPERTIES OF DIATOMIC MOLECULES –LITHIUM 
 

In this section, we apply the energy spectrum of the Wilson – Racah quantum system to find the thermodynamic properties 
of diatomic molecules – Lithium. With reference to Peng et al. (2018), we used the new energy spectrum of this study in 
place of the vibrational energy level belonging to the improved Manning – Rosen potential. Therefore, the parameters are 
denoted by 
 

1 2
2

1 2 2 22

2 4

v
e

v

h m s
D v

s




 

  
 = − − + 
   

         (40) 

 

and our energy spectrum becomes 
 

2
1 2

2
2 1 2 2 22

2
2 2 4

v
v e

v

h m s
E v D

s

 

 

     = − + − −       

      (41) 

 

Where: 
 

( )
2

2 2

8 1
2 1 1

er

e

v

D e
s v

h





−
= + + + ,   ( )2

2 2

2
1er

em D e
h




= −  

 

2

2 1 2 e e
e

c r
D

e e e

e e e

c W c r e
D r D


  

    
− 

 = + −
 
 

,  

 

eD   is the dissociation energy,  er   is the equilibrium bond length,    is the adjustable parameter for range of interaction,  

c is the speed of light,  h is Planck constant,  v  is the iterative number
max0,1,2,3,...,v v=  ) ,  

maxv  is the  maximum 

upper bound vibration quantum number,  is the reduced mass of lithium diatomic molecule. The vibrational partition 

function, a direct summation over all possible vibrational energy levels available to the system, for our model is 
  

( )

2
1 2

22 1 2 2 2

2
2max max max

2
2

2 2 4
2

0 0 0

v
e

v
n

sh m
v D

v v v sv
E

v v v

Q e e e

 
  



     + − −    +   −  

= = =

= = =        (42) 

 

Where 1

kT
 =  ,  where k is the Boltzmann’s constant.  Using Vibrational partition function (42) the thermodynamics 

properties function can be calculated as follows: 
 

Vibrational Mean Energy,  lnQ
U




= −



,         (43) 

 

Vibrational Heat Capacity,  U
C k




= −



,         (44) 

 

Vibrational Free Energy,  1
lnF Q


= − ,        (45) 

 

Vibrational Entropy,  ln
ln

Q
S k Q k




= −



.       (46) 
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Table 1. Experimental values of H2 and Li molecules. 
 

Molecule λ(m) e(C) m(kg) h (kgm2s-1) ε0 (kgs-2) De (m-1) Μ (μkg) re (Å) ωe (m-1) n Ref. 

H2 0.2 
1.602× 
10-19 

9.109 
× 10-31 

6.626 

× 10-34 

8.854 × 
10-12 

- - - - 1,2… 
Alhaidari 
(2020) 

Li - - - 
6.626 

× 10-34 
- 

8.854 

× 10-12 
3..626 4.173 

65.130 
× 102 

1,2… 
Koekoek 
(1998) 

 
 
 

RESULTS AND DISCUSSION 
 

This section considers hydrogen and lithium molecules 
and present sets of results of energy spectrum of 
Hydrogen atom, thermodynamic functions with respect to 
temperature all for Wilson-Racah quantum system 
obtained within the framework of two approaches. The 
corresponding input experimental parameters used are 
summarized in Table 1. 

It can be seen from Figure 1 that eq. (38), the new 
model, gives good approximate prediction of the Hydrogen 
atom energy spectrum with an estimated average error of 
0.125% and we are able to ascertain that the new physical 
model gives a good prediction of the hydrogen model with 
Figure 2. Moreover, the comparison of the first set of the 
energy spectrum with the energy spectrum of hydrogen 
atom obtained by the numerical solution of the 
Schrödinger eq. (38), enables us to determine the region 
of validity of the expression eq. (19) derived for the energy 
spectrum in the WRQs, as well as to reveal the efficiency 
of the direct WRQs method in its presented realization. 

Without using any experimental spectroscopy data 
except the one shown in Table 1, the total thermodynamics 
properties function was calculated using vibrational 
partition function of Lithium molecule for a wide range of 
temperatures varying for -5 to 500k at 1 bar pressure. 
Figures 3 to 7 show the variation of thermodynamic 
properties function with respect to temperature for Q, U, C, 
S and F respectively. The calculated theoretically 
predicted values of thermodynamic function in WRQs are 
represented by red dotted line while the blue dotted line 
represent the experimental data extracted from Peng et al. 
(2018). The Figures 3 to 7 show good agreement between 
the values of thermodynamic functions obtained from the 
proposed model and experimental values over a wide 
range of temperature (0-500k). 

It can be seen that all thermodynamic functions increase 
as temperature, T increases. It can further be observed in 
Figures 3 to 4, that the vibrational partition function Q, 
mass energy U increase monotonically as temperature T 
increases. However, it is known from Eq. (42) that the 
vibrational partition function, a direct summation over all 
possible vibrational energy levels available to the system 
may increase with increasing temperature; therefore, we 
have fixed the value of T at a reasonably moderate 
value 0 − 500℃ (Peng et al., 2018). The Q and U are 
increasing almost linearly with increasing temperature.  

 
 

Figure 1.  Energy spectrum of the hydrogen atom using 
experimental values in WRQs. 

 
 
 

 
 

Figure 2.  Energy spectrum of the hydrogen atom from Bohr 
model. 

 
 
 

The analogous dependencies have been received in Peng 
et al. (2018). Note that, increasing the temperature, the tilt 
angle of the curve is increasing.  

Figure 5 shows the dependence of vibrational heat 
capacity C on temperature, T. the vibrational specific heat 
C increases as T increases to a maximum value and 
decreases thereafter. It may also be observed that the 
vibrational specific heat C become more or less equal as  
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Figure 3. Vibrational partition function Q as a function of 
temperature T. 
 
 
 

 
 

Figure 4. Vibrational mean energy U as a function of temperature T. 
 
 
 

 
 

Figure 5. Vibrational heat capacity, C as a function of 
temperature T. 
 
 
 

T increases to about 100℃,  T is therefore set equal 

to 500℃ (Peng et al., 2018). Figure 6 shows the Vibrational 
entropy S for the diatomic molecule as a function of 
temperature T. The entropy S increases as T increases but 
reaches a constant value at 300 − 500℃ subsequently, as 
expected.  In Figure 7, the Vibrational free energy F for the 
diatomic molecule as a function of temperature T is 
presented.  The free energy F increases to the maximum 
value and then decreases with increasing temperature. 
 

 
 
 

 
 

Figure 6. Vibrational entropy S for the diatomic molecule as a 
function of temperature T. 

 
 
 

 
 

Figure 7. Vibrational free energy F for the diatomic molecule as 
a function of temperature T. 
 
 
 

As it can be seen from the figures the curves have 
extremum. Increasing the temperature, the curve of the 
Vibrational specific heat dependence on the temperature 
is changing its slope. For higher temperatures the curve is 
firstly increasing than decreasing having the minimum 
point. For lower temperatures the curve firstly increases 
and after reaching maximum point decreases. 

The relative percentage of the predicted values was 
calculated from Peng et al. (2018). The results are shown 
in Table 2. The corresponding average relative deviations  
𝑑𝑎𝑣𝑔(%) are 2.42% , 0.45% , 0.30%, 1.23%, and 1.50% for 

Q, U, C, S and F thermodynamic functions respectively. 
This proves the efficiency of model to calculate the 
thermodynamic properties of any atomic or diatomic 
molecular substances. The excellent agreement with the 
experiment will deteriorate with increasing temperature. 
The reason is that the calculated thermodynamic functions 
in the present work contains only contributions of the 
ground states of molecules to the vibrational energy level 
and does not include the contributions of the excited states 
of molecules. In the Peng et al. (2018) data, the 
contributions of all states are included. At low temperature 
(T < 300 K), the discrepancy between the predicted values 
and  Peng   et   al.  (2018)   data   increases   because   the  
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Table 2. Comparison between experimental and predicted thermodynamic functions for Q, U, C, S and F.  
 

T(K) 
Q(J) U(J) C(J/K) S(J/K) F(J) 

RTh RExp RTh RExp RTh RExp RTh RExp RTh RExp 

-5 - - - - - - -1.00E-16 -1.00E-16 - - 

0 0.000 0.000 1.00E-23 1.00E-23 0.00E+00 0.00E+00 - - 4.000 4.000 

5 - - 2.50E-48 2.50E-48 - - - - - - 

50 0.500 0.400 - - 8.00E-20 8.00E-20 2.50E-19 2.50E-19 3.500 3.500 

70 - - - - - - 3.00E-17 3.00E-17 - - 

100 - - 2.00E-21 2.00E-21 1.50E-19 1.45E-19 5.90E-17 5.90E-17 2.500 2.500 

150 7.000 6.900 3.00E-21 3.00E-21 1.00E-19 1.00E-19 7.50E-17 7.50E-17 0.500 0.500 

200 9.500 9.500 3.80E-21 3.80E-21 5.00E-20 5.00E-20 8.50E-17 8.50E-17 -1.500 -1.500 

250 12.000 12.000 4.40E-21 4.40E-21 2.00E-20 2.00E-20 8.90E-17 8.90E-17 -3.500 -3.500 

300 14.000 14.000 4.75E-21 4.75E-21 9.00E-20 9.00E-20 9.00E-17 8.70E-17 -5.400 -5.400 

350 16.000 16.000 5.00E-21 5.00E-21 3.00E-21 3.00E-21 9.00E-17 8.70E-17 -7.500 -7.500 

400 16.900 17.000 5.15E-21 5.15E-21 1.60E-21 1.60E-21 9.00E-17 8.70E-17 -9.500 -9.800 

450 17.900 17.500 5.25E-21 5.25E-21 1.80E-22 1.80E-22 9.00E-17 8.70E-17 -11.500 -11.900 

500 18.000 18.000 5.30E-21 5.30E-21 2.00E-21 2.00E-21 9.00E-17 8.70E-17 -14.000 -14.200 

𝑑𝑎𝑣𝑔(%) 2.42 0.45 0.30 1.30 1.50 

 
 
 

vibrational partition function obtained by employing the 
improved Manning – Rosen potential formula only contains 
the lowest order approximation contributions (Koekoek 
and Swarttouw, 1998). 

To check the sensitivity of the predicted results to the 
molecular constant used, the average relative deviation for 
C was calculated when changing the value of each 
parameter by 1%, while the four other parameters are 
fixed. When the value of 𝐷𝑒 increased by 1%, the average 
relative deviation varies from 2.42 to 1.48%.  If the value 
of  𝑟𝑒 is increased by 1% and values of 𝐷𝑒 and 𝜔𝑒 remain 
unchanged, the average relative deviation varies from 2.42 
to 1.48%. When the value of 𝜔𝑒 increased by 1% and keep 
the original values of 𝐷𝑒 and  𝑟𝑒, the average relative 
deviation turns to 2.45% from 2.42%. It is obvious that the 
sensitivity of predicted results most depends on the value 
of the equilibrium bond length.  

 
 
Conclusion 
 
This work theoretically studied the thermodynamic 
properties of diatomic molecules as a function of 
temperature as well as the atomic properties of Hydrogen 
atom, using WRQs. The energy spectrum of WRQs has 
been obtained and applied to these two physical models 
to test its validity as it shows good approximation of the 
Hydrogen atom energy with an estimated average error of 
0.125%. The vibrational partition function has been 
calculated and using it, the thermodynamically properties 
of the diatomic molecules have been calculated. The 
proposed procedure merely relies on experimental values 
of five molecular constants. The average relative 
percentage deviations of the thermodynamic properties’ 

functions Q, U, C, S, and F are 2.42% , 0.45% , 0.30%, 
1.23%, and 1.50% respectively. The mean energy 
increases monotonically with temperature increase. The 
entropy increases monotonically for all values at low 
temperature, whereas it depends on the energy spectrum 
at high temperatures. The heat capacity shows a peak 
structure. Vibrational free energy has a positive sign and 
decreases with the temperature value increase. These 
represent satisfactory compromise between accuracy and 
rapid computations. 
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APPENDIX A 
 

The three-term recursion relation of the four parameters Wilson orthogonal polynomial at ( )1,2,3...,n =  is 

 

( )( )( )( )

( )( )

( )( )( )

( )( )
2 2

1 1 1 1

2 2 1 2 1 2 2
n n

n v n a n b n v a b n n v a n v b n a b
y W W

n v a b n v a b n v a b n v a b

 
   


   

 + + + + + + + + + + − + + − + + − + + −
= + − 

+ + + + + + + + − + + + + − + + + + −  

( )( )( )( )

( )( )
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( )( )
1 1

1 1 1 1 1 1

2 1 2 2 2 2 1
n n
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n v a b n v a b n v a b n v a b

 
   
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− +

+ + − + + − + + − + + − + + + + + + + + + −
− −

+ + + + − + + + + − + + + + + + + + −
  

                               (A1)          
The initial seeds ( )0n = for this recursion at 

0 1W  =   
and 

  

( )( )

( ) ( )( )
( )2 2

1

a b v a b
W y

a b v a b


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


+ + + + +
= − +

+ + +
                                   (A2) 

 
The generalized orthogonality relation is  
 

 ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
2 2

0

; , , ; , , ; , , 2
2 1

n m
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


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 − +  +  +  +       (A3) 

 
The orthonormal version of this polynomial in is 
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  (A4) 

 
And the three – term recursion relation for the orthonormal version is  
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Using the Gauss Sum eq. (7) to evaluate the hypergeometric function 
2 1F  at 1t =  in eq. (9), 
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Using eq. (13) in the Wilson polynomial changes it to become the discrete Racah Polynomial defined as  
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Like the Wilson polynomial, the discrete Racah polynomial has an orthonormal version defined as follows: 
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with orthogonality 
 

( ) ( ) ( ) ,

0

; , , ; , , ; , ,
N

N N N

n n n n

m

m R m R m           

=

=       (A9) 

 
Note Alhaidari and Taiwo (2017) made use of the following identities in their calculations: 
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