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ABSTRACT: There exist several forms of perturbation theory in Quantum Mechanics, namely: non-degenerate
perturbation theory, degenerate perturbation theory, time-dependent perturbation theory, time-constant perturbation
theory and time-harmonic perturbation theory. This paper presents an extension of the perturbation theory for non-
degenerate states. It has been observed that most texts and journal papers treat only the first —order and second-order
non-degenerate perturbation theory. Therefore, this paper attempts to treat and present the third order and fourth order
non-degenerate perturbation theory in quantum mechanics. It can thus be asserted that the higher the order of
perturbations of quantum systems that we know, the more successful will be our efforts in suppressing or eliminating them.

Keywords: Energy states, first-order, fourth-order, Hamiltonian, perturbation, perturbation-free, perturbed, second-order,
third-order, unperturbed state, wave function.

INTRODUCTION
Perturbations cause shifts or changes in values of the iii. Electron-electron mutual electrostatic interaction
Hamiltonian, energy states and wave functions of the (repulsion)
particles (such as electrons) constituting atoms (Condon v, = YN, yi- ?)
and Shortley, 1990; Bell, 2004). For example, there are e =14)= 14”%’11
slight perturbations in the energy levels of the hydrogen
atom (Fermi, 1971), where effects of spin, electric and iv. Spin-orbit interaction (spin angular momentum-
magnetic fields shift the energies by small amounts from orbital angular momentum):
the one-electron atomic model (Flugge, 1994; Nomura and Vo = —ynN il (d_V) ()
Yamada, 2003). Another example is the case of a potential 5o =lmzric? \dr
well that is nearly a harmonic oscillator potential but has
either a weak asymmetry, or deviates from quadratic well V. Spin-spin interaction (electron spin-electron spin):
for large excursions (Sasaki et al., 2005). _ Ho fogn it &2 [oio; _ 3Coirip(ojrij) )
In atomic systems, perturbations can be caused by any == me | i
or several of the following (Mandl, 1987; Goldman and
Krivchenkov, 2003): vi. Orbit-orbit interaction (electron-electron orbital
. o angular momentum):
I Klnetlc energy' V,, = Lz;;i Ciilil; (6)
T= + Zl 12M (1)
Vii. Electron spin-nuclear magnetic moment:
i. Electron-nucleus electrostatic interaction: Vasnmm = “0 Z d w
l T
= Il 4me,ry (2) Viii. Nuclear spin-electron orbital angular momentum:
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Vesmmm = 425, 2 (424) ®)
iX. Relativistic correction (to the kinetic energy):
Ve = ~ Sy ols (©)
X. “Exchange interaction”.
Xi. Miscellaneous other effects, such as quadrupole

interactions, finite nuclear size, etc.

The dominant terms after the first two are generally terms
(x) and (iii), after which term (iv) is next and the remainder
are usually negligible. For heavy atoms, sometimes term
(iv) predominates over terms (x) or (iii). In order to estimate
the effects of these terms that cannot be computed and
treated exactly, the perturbation theory is one of the
methods needed to compute accurately the Hamiltonian,
energy states and wave functions for atomic systems.

NOND-EGENERATE PERTURBATION THEORY

Formally, Hamiltonian cannot solve exactly, but the
dominant portion presumably can be treated analytically.
Therefore, Hamiltonian is separated into a zero-order part
and a first-order part (Sasaki et al., 2005):

A= A® + gO (10)

Where HD is relatively small, and the eigenfunctions and
eigenvalues of A are presumably known.

In the formal development of the perturbation theory, the
perturbation will be “turn on” gradually, so that equation
(10) can be written as:

H=H9 + o« D (11)

Where 0 <x <1 is a parameter. Both the eigenvalues
and the eigen functions in this parameter will be expanded,
such that:

Ep= EV+ < BV + o2 EP 403 ED 4 — — — — - (12)
¥, = 0+ a?V + P + PP+ - - (13)

Where Er(lo) and l}’r(lo)correspond to the unperturbed
system (a = 0). Then, the time-independent Schrodinger
equation can be rewritten as:

(A- E)¥p= (A°+ aB* —E” — aE" — o EY —
o3 E,ff) —oc* E,(f) . )(‘P,(lo) + a‘{’,(ll) + azl}’,gz) + a3lP,§3) +
e .. )=0 (14)

which becomes after collecting like terms of the same
order in «,
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(70— B)#l® + ol (RO — E°)0® + (7O~
EC)WP) + 2[(AOwSY + AP — EPw —
EPwP — EPYMI] + «3[(AO9Y + AOwP —

0 3 1 2 2 1 3 0
EOW  EDw w0 0] |
A(AQPY + AV — EPw — pUp®
EPw® = EOWD ~ EOw® Y4 Do

(15)

Since this equation must be valid for arbitrary values of «,
the coefficients must individually vanish, so that we get:

(A - E2)w” = o; (16)
(A® - EP)w” + (A — E7)w = 0; (17)

AOY® + goy® — Py _ gDyl _ gDy = q;
(18)

AOYS ¢ gOg@ _ pOyB) _ pWg@ _ p@g®) _
EPw = o; (19)

H(O)lp(4) + H(l)q_]@) _ E(o)lp(4) _ E(l)l_p(?’) _ E(Z)Lp(Z) _

n n n n n n n n
EQwW® _ Wy _ (20)
Equation (16) is just the zero-order equation of the

unperturbed system, and all of these zero-order quantities
are known exactly.

NONDEGENERATE FIRST —ORDER PERTURBATION
THEORY

In equation (17), the first-order quantities are related to the
zero-order quantities. To find the first-order quantities,

scalar product of equation (17) with lP,(IO) is taken to obtain
(Marston and Affleck, 1998):

@A) - EO(ePw0) + (¢ ]AO 9 ) -

EO(w0 ) = 0 (21)

Using the Hermitian property of H© in the third term of
equation (21), we have:

(w10 [®) = (AOWO|9) = ED(w0]w®)  (@2)

so that the third term cancels the fourth term of equation
(21); then since ‘P,(lo) is normalised, we find:

w _ (AR

i (W(o)‘w(o)) - <w’(10)|ﬁ(1)|1p7(10)> =AY (23)
n n
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so that the first—order correction to the energy is the
average value of the perturbed energy in the unperturbed
state. For the first-order wave function, it can be
represented in terms of the zero-order wave function since
they form a complete functional set, so that:

v = 3a, v (24)

Inserting equation (24) into equation (17), the first-order
equation can be written as:
H\(l)qu(Lo) + 0O Y an q,i(o) — Er(Ll)lpr(LO) + E1(10) Y an lpi(O) (25)

Since i #n,a,, =0and IP(O) (K|, therefore equation
(25) becomes:

EP(Kny + EL 3 an; (KID)
(26)

(K|AD|n) + X a; (K|AO|i) =

Since the kets and bras are Eigen functions, three of the
integrals reduce to Kronecker delta functions, and we get:

(K|H®|n) + 3 ani EQ6k = EX 8 + ESY 31 ani S (27)
The §,; functions cancel out the summations, and we get:
HY + a4 E? = EP 4n + anEY (28)
For K = n, Equation (28) becomes:

EW = gO. (29)

For K # n, Equation (28) becomes

HG) = an (B — E) (30)

In the non-degenerate case, E,((O) + E such that the

ay,'s are finite. In the degenerate case, E(O) E(O) such
that the a,'s are infinite which are not physically
acceptable.

NON-DEGENERATE SECOND-ORDER PERTURBATION
THEORY

Sometimes in some physical cases, H,%) =0, so in order
to find the lowest order of non-zero correction, we must
proceed to the second order in perturbation theory (Avron

etal., 1994; Abrikosov et al., 1995). In this regard, let ¥?
be expanded in the same basis set, so that we have:
WP = %, by W (31)

Thus, equation (18) becomes:

g i by lIJj(O) +
1 0
Er(l )Ziam' lpi( )

ﬁ(l) ZL, A lpi(O) _ E7g[0) Z] bn] qj](o) _
—EPw® =0 (32)

In equation (32), taking the scalar product with (K|, we get:

% b (K|HQ ) + T ani (K|AD]j) = EL 3 by (K1) +
ED ¥ an (Kli) + EP(K|n). (33)

In Equation (33), the integrals lead to Kronecker delta
functions such that we get:

Z]bnj E(O)(SKJ + Zlaan(l) E(O)Zj bnj 61{]
EN 3 anibii + X kn (34)

In equation (34), all the summations are cancelled out by
the Kronecker delta functions except one leading to:

bnk E(O) + ZlamH(l) E(O) Z} bn} 61(] +E(1) Zlam 61(1
D5, (35)

For k=n, equation (35) gives the second-order energy
correction as:

E(Z) iy H(l) - annE(l) 2iOni H(l) - annH(l) =
Sien i Hyy (36)

Recall from equation (30), that:

(1)

Hy
Apg = (E(o)—T;(o)) (37)

Hence, similarly, we have:

HD
Ay = m (38)
Using equation (38), equation (36) can be written as:
W,
(2) HLTl H‘nl
En Zl:n(E(o) E(o)) (39)

It should be noted here that the second-order energy
correction has been obtained with only the first-order wave
functions, just as the first-order energy correction was
obtained with only the zero-order wave functions. To
obtain the second-order wave functions, equation (35) is
examined with k # n. This gives:

(0) )y _ (€] (€]
bu (Ex’ — En”) = angH,, — Tian Hy; OF
(1) (1) 1), @
H H H; 'H
bpi = Xi+n

(E(O) E(O))(E(O) E(O)) (Er(zO)_EI((O))Z

(40)



The higher order wave functions are given by:
lpn = qu(LO) + Zk #n Ank IPIEO) + Zk *n an ‘IJIEO) (41)
Or

lpn = IPTE.O) + Zi +n Ani l'Pi(O) + Zj #n bnj qu(O) (42)

NONDEGENERATE THIRD-ORDER PERTURBATION
THEORY

In some cases, H,ﬁ) = 0, therefore, in order to obtain the
lowest order nonzero correction, we must proceed to third-
order in perturbation theory. Here again, we will expand

‘P,(f) in the same basis set, such that we have:

W = 3, Cop PO (43)

Inserting equation (43) into equation (19), we get:

H° Zv Cnp lngm + 0 z:i bni lpjm) - Er(lO) Zp Cnp lpzSO) -

EV Y by ¥ —EP Y 0, WO —EPWO =0 (44)

Taking the scalar product of equation (44) with (K|, such
that the third-order perturbation equation becomes:

Y Cop (KIA@|p) + X by (K|ADj) = B %) Copp (Kp) +
B S by (K1) + EP 4 ani(K1i) + ES (K ) (45)

The integral leads to Kronecker delta functions such that
we obtain:

0 1 0
2p Cup E1(o )51(10 + 2 bnj Hl((j) = Egz ) 2p Cop kp +
1 2 3
ng ) % bnjOkj + Er(l)z:i Apiby; + Er(z )8kn (46)

In equation (46), all the summation signs are neutralised
by the Kronecker delta functions with the exception of only
one, such that we get:

CupESY + byHE) = EQ Cppy + B byj + By + B 8
(47)

For K = n, equation (47) yields the third-order energy
correction as follows:

CopES” + by HS) = EY Cop + ESY by + EP @y + EP 6y,

= Cop(EL—EP) + E = by HY —EX by — EPay

nj nj
2B = by HY = Cop (EV—E) —EL by —EPay  (48)

nj 'nj

But we know that:
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Hiy
an; = EO-9) (49)
A
R 50
nj = 4izEn (L(0)_L0)) (g0 _L0 2
(e -ES2) (BR-E() (E9-£()
Crp = Dizn 7o) ()Hg?ll()l){ﬁ):{?i) ©_z0) Hgﬂg}l%
0 0 0 (] (] (]
(CRR) R Giamr) R o)
(51)

Substituting equations (49-51) in equation (48) we get:

ExY = Yien (o)H%ll){;?l({o%lj) O HE'Z)H%QH%}) -
(En —ES )(En -E} ) (E;")—EEO))
Y (s iy ot
(En —E| )(En ~E{ )(En ~Ey ) (ES’)—E;"))
AHPED) WD) o

in "ji _ _ i n
Dizn (ng)—Eﬁ-O))(E;o)—EgO)) (E;O)—EE»O))Z (Ei{l’?)l—EE")) (52)

or, we have:

(D) (D) (1) P20
E® =y Hip Hji Hyj |5 | Hn
— Li¥n - z7
n (E;O)—Ej.o))(ng)—Ego)) (E,({’)—EE-O))
(0@
Hp Hy Hyy HE}BLH%%H% anH Y

Dizn EP-0) &) (ES’)—ES’))Z Tt 00y

(53)

We can substitute for a,;in the last term of equation (53),
where:
HY

mn
EO g

ani =
Equation (53) is the non-degenerate third-order energy
correction for the atomic (quantum mechanical) system.
The wave function correction for third-order perturbation is:

3 0 0 ’
q’é)=qj7$)+Zi=naniwi()+zf*nbnjlpj()+
Lp#n Cop LPZEO) i

NON-DEGENERATE FOURTH-ORDER PERTURBATION
THEORY

In some physical cases, H,(f;l) = 0, hence in order to obtain
the lowest order nonzero correction, it is necessary to

proceed to fourth order in perturbation theory. \P,S“) is
expanded in the similar basis set, and we get:

Y =3, d v (55)

Let us insert equation (55) into equation (20). Then we
obtain:
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AO Y, dpg¥® + AV Y, Cg¥® = ED ¥y dyg ¥ —

nqg - q nqg " q
E‘Ell) Zq qul'ptg()) - Er(12) Zj bnjlpj(O) - Er(z3) Zi aniqji(O) -

Taking the scalar product of equation (56) with (K|, such
that the forth-order perturbation equation becomes:

Yq dug (K|H@|q) + X, Cop (K|HD|p) =
EQ Y, dng (Klg) + ESY 3, Cpp (DIK) +
ED Y, by (K1j) + E 3y an; (Ki) + B (K[n)
(57)

The integrals yield Kronecker delta functions so that we
get:

Zq dnq Et(JO)qu + ZP Cnp HI({lp) = ET(lO) Zq dnq 6Kq +

EV S, Cop Skp + EL Y bnj 8 + B 3 @y 8i + ES
(58)

In equation (58), all the summation signs are cancelled out
by the Kronecker delta functions excluding one, such that
we have:

dngE” + CopHYy = EVdg + ESCppy + EP by +

ES) QAni + E7(14) 6Kn (59)

For K = n, equation (59) gives us the third-order energy
correction as follows:

0 0 2
AngEL + CopHS) = EQdyg + ESCrp + ED by +

3 4
E1(’L )ani + E'Ez )Snn

0 0 1 2
= dTHI(Et(I = Er(l )) + Cnp(Hgm) - Er(ll)) - Egl )bnj -
EPa, = EY (60)

But we know that:

HY
— m
Ani = (E(o)_E(O)) (61)
n i
(1) (1) (1),(1)
b — Z Hin I-lji Hjn Hnn
nj = 4Li#En (20)_0) (0 _L0) 2
(e -E) (e -E”) (E0-£()
(62)
(1) (1) (D
C., =Y, Hin Hji Hp; HOHDHS)
np = &iFn (20)_5(0))/;(0)_L0))(50)_(0) 3
(En -ES )(En -E} )(En -E§ ) (E;")—Eg’))
(63)
Hiy HE HHEY HigaHi Hp He)

dnq = Yizn (E%o)_Ego))(E;o)_EEO))(EE‘LO)_E;o))(E;o)_Ego)) - (Ef)—EEf)y

(64)

Substituting equations (61-64) in equation (60), we obtain
the fourth-order perturbation energy correction as follows:

(1)1, (1) (1) (1)
EW — —EPHE E@ Iy Hin Hji | Mt (L (HY -
D Com0) I Rl comay conc) il [y | R

E) Iy, HE HGHG) L (E© -
3
mOEE (D) -ED)(EE)  (50-5) !

_ Hgﬂ%“%“%} (65)

E=)

ey, HiYHPHE HE)
n i#n (E%O)_EEO))(E;O)_EEO))(E;O)_E;O))(E;O)_EZ(JO))

Equation (65) is the non-degenerate (i.e., energy level i#
energy level n) fourth —order energy correction for the
guantum (atomic) system.

The wave function correction for the fourth-order
perturbation is:

0 0 0
an=‘1’,(1) + Yizn am.lpi()+ Yj#n b"ilpj()-l_

Zp £n Cnp lszO) + Zq #n dnq ‘Péo) (66)

RESULTS AND DISCUSSIONS

The first-order energy correction for the Hamiltonian or
total energy of the electron in an atom or multi-electron
guantum system is:

B = (HD) (67)

The second-order energy correction is given by:

[COFNCY)

() Hin Hni
E” =% . 68
n Zl n ( 57(10)_ Ei(O)) ( )

The first-order wave function is:

lp,gl) = lp,go) + Zi Ani lpl-(O). (69)
The second-order wave function is:

0 0 0

lIJ11=Lpr(1) + Zi#n anilpi()'i' Zj:tn bnjqjj( )- (70)
The derived expressions, from basic principles, for the
third-order and fourth —order energy corrections and
corresponding wave functions are presented as follows

here:

The third —order wave functions are given by:

‘P1(13) = ‘P,(lo) + Yizn Qni ‘Pi(O) + Xjn bnj lpj(O) +
0
Lp#n Cop Lng ) .

The fourth —order wave functions are given by:

ly1(14) = lyr(l()) + Zi #n Ani lI']i(O) + Zj #n bnj l'l‘lj(O) +
Y n Crp WS + Tg s g W (72)
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Figure 1. Organization or levels of use and accuracy of the orders of quantum system perturbations.
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Figure 2. lllustrations of the conditional levels of use of the four orders of non-degenerate quantum system perturbations.



22 Appl. J. Phys. Sci.

The third —order energy correction is found to be:

2
E® =3 HooHHD Qe
n T 4Li#n (E;O)_EE'O))(E;O)_ELQ)) (E;O)—EEO))Z

(1) ;(1), (1) 1 1)..(1
Hy Hy"Hyy H&%H;QH;J |Hin|? Hni
_Zi:#n

Zi::n (EEIO)—E§O))(E$IO)—E§O)) (E;O)—E;O))Z (E;O)_EEO))Z
(73)

The fourth —order perturbation energy correction is given
by equation (65).

Figure 1 depicts the hierarchical levels of selection and
relationship between the perturbation orders and Figure 2
shows the lllustrations of the conditions and levels of use
of the four orders of non-degenerate quantum system

perturbations.

CONCLUSIONS

In this paper, the various causes of perturbations of total
energy and wave functions in atomic (quantum) systems
have identified. The expressions or formulas for
calculating the approximately exact values for total
energies and wave functions of particles under third-order
and fourth—order perturbations have been derived, that is,
third-order and fourth—order energy corrections and
corresponding wave functions are presented. This serves
as a step forward in the dynamic field of Physics and is
ahead of texts and journals that so far treat perturbations
from zeroth-order, first-order, to second-order. Thus, if this
research work is implemented and improved upon by
scientists, we shall succeed in our drive to eliminate
unwanted perturbations in quantum systems.
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