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ABSTRACT: There exist several forms of perturbation theory in Quantum Mechanics, namely: non-degenerate 
perturbation theory, degenerate perturbation theory, time-dependent perturbation theory, time-constant perturbation 
theory and time-harmonic perturbation theory. This paper presents an extension of the perturbation theory for non-
degenerate states.  It has been observed that most texts and journal papers treat only the first –order and second-order 
non-degenerate perturbation theory.  Therefore, this paper attempts to treat and present the third order and fourth order 
non-degenerate perturbation theory in quantum mechanics. It can thus be asserted that the higher the order of 
perturbations of quantum systems that we know, the more successful will be our efforts in suppressing or eliminating them. 
 
Keywords: Energy states, first-order, fourth-order, Hamiltonian, perturbation, perturbation-free, perturbed, second–order, 
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INTRODUCTION 
 
Perturbations cause shifts or changes in values of the 
Hamiltonian, energy states and wave functions of the 
particles (such as electrons) constituting atoms (Condon 
and Shortley, 1990; Bell, 2004). For example, there are 
slight perturbations in the energy levels of the hydrogen 
atom (Fermi, 1971), where effects of spin, electric and 
magnetic fields shift the energies by small amounts from 
the one-electron atomic model (Flugge, 1994; Nomura and 
Yamada, 2003). Another example is the case of a potential 
well that is nearly a harmonic oscillator potential but has 
either a weak asymmetry, or deviates from quadratic well 
for large excursions (Sasaki et al., 2005). 

In atomic systems, perturbations can be caused by any 
or several of the following (Mandl, 1987; Goldman and 
Krivchenkov, 2003): 
 
i. Kinetic energy: 

 𝑇 =  
𝑃𝑛

2

2𝑀𝑛
+ ∑

𝑃𝑖
2

2𝑀𝑒

𝑛
𝑖=1    (1) 

 
ii. Electron-nucleus electrostatic interaction: 

 

𝑉𝑒𝑛 =  − ∑
𝑍𝑒2

4𝜋𝜀𝑜𝑟1

𝑁
𝑖=1    (2) 

iii. Electron-electron mutual electrostatic interaction 
(repulsion): 

𝑉𝑒𝑒 =  ∑ ∑
𝑒2

4𝜋𝜀𝑜𝑟1𝑗

𝑖−1
𝑗=1

𝑁
𝑖=1     (3) 

 
iv. Spin-orbit interaction (spin angular momentum-

orbital angular momentum): 

𝑉𝑠𝑜 =  − ∑
𝜎𝑖𝑙𝑖

𝑚2𝑟𝑖𝑐2 (
𝑑𝑉

𝑑𝑟𝑖
)𝑁

𝑖=1       (4) 

 
v. Spin-spin interaction (electron spin-electron spin): 

𝑉𝑠𝑠 =  
𝜇0

4𝜋
∑ ∑

𝑒2

𝑚2
𝑖−1
𝑗=1

𝑁
𝑖=1 [

𝜎𝑖𝜎𝑗

𝑟𝑖𝑗
3 −

3(𝜎𝑖𝑟𝑖𝑗)(𝜎𝑗𝑟𝑖𝑗)

𝑟𝑖𝑗
5 ]     (5) 

 
vi. Orbit-orbit interaction (electron-electron orbital 

angular momentum): 

𝑉𝑜𝑜 =  ∑ ∑ 𝐶𝑖𝑗𝑙𝑖𝑙𝑗
𝑖−1
𝑗=1

𝑁
𝑖=1           (6) 

 
vii. Electron spin-nuclear magnetic moment:  

𝑉𝑒𝑠𝑛𝑚𝑚 =
𝜇0

4𝜋
∑

𝑒

𝑚
[

𝜇𝑛𝜎𝑖

𝑟𝑖
3 −  

3(𝜇𝑛𝑟𝑖)(𝜎𝑖𝑟𝑖)

𝑟𝑖
5 ]𝑁

𝑖=1   (7) 

 
viii. Nuclear spin-electron orbital angular momentum:  
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𝑉𝑒𝑠𝑛𝑚𝑚 =
𝜇0

4𝜋
∑

𝑒

𝑚
(

𝜇𝑛𝑙𝑖

2𝜋𝑟𝑖
3)𝑁

𝑖=1    (8) 

 
ix. Relativistic correction (to the kinetic energy):  

𝑉𝑟𝑐𝑡 =  − ∑
𝑃𝑖

4

8𝑚3𝑐2
𝑁
𝑖=1            (9) 

 
x. “Exchange interaction”. 
 
xi. Miscellaneous other effects, such as quadrupole 

interactions, finite nuclear size, etc. 
 
The dominant terms after the first two are generally terms 
(x) and (iii), after which term (iv) is next and the remainder 
are usually negligible. For heavy atoms, sometimes term 
(iv) predominates over terms (x) or (iii). In order to estimate 
the effects of these terms that cannot be computed and 
treated exactly, the perturbation theory is one of the 
methods needed to compute accurately the Hamiltonian, 
energy states and wave functions for atomic systems. 
 
 

NOND-EGENERATE PERTURBATION THEORY 
 

Formally, Hamiltonian cannot solve exactly, but the 
dominant portion presumably can be treated analytically. 
Therefore, Hamiltonian is separated into a zero-order part 
and a first-order part (Sasaki et al., 2005): 
 

𝐻̂ =  𝐻̂(𝑜)  +   𝐻̂(𝐼)     (10) 
 

Where 𝐻̂(𝐼) is relatively small, and the eigenfunctions and 

eigenvalues of  𝐻̂(𝑜) are presumably known.  
 
In the formal development of the perturbation theory, the 
perturbation will be “turn on” gradually, so that equation 
(10) can be written as: 
 

𝐻̂ =  𝐻̂(𝑜) +  ∝ 𝐻̂(𝐼)   (11) 
 

Where 0 ≤ ∝ ≤ 1 is a parameter. Both the eigenvalues 
and the eigen functions in this parameter will be expanded, 
such that:  
 

𝐸𝑛 =  𝐸𝑛
(𝑜)

+  ∝ 𝐸𝑛
(1)

+ ∝2 𝐸𝑛
(2)

+∝3 𝐸𝑛
(3)

+  − − − − −  (12) 

 

Ψ𝑛 =  Ψ𝑛
(0)

+  𝛼Ψ𝑛
(1)

+  𝛼2Ψ𝑛
(2)

+ 𝛼3Ψ𝑛
(3)

+  − − − −    (13) 
 

Where 𝐸𝑛
(𝑜)

 𝑎𝑛𝑑  Ψ𝑛
(0)

correspond to the unperturbed 

system (𝛼 = 0). Then, the time-independent Schrodinger 
equation can be rewritten as: 
 

(𝐻̂ −  𝐸𝑛)Ψ𝑛 =  (𝐻̂0 +  𝛼𝐻̂1 − 𝐸𝑛
(𝑜)

−  𝛼𝐸𝑛
(1)

− ∝2 𝐸𝑛
(2)

−

 ∝3 𝐸𝑛
(3)

− ∝4 𝐸𝑛
(4)

… . . )(Ψ𝑛
(0)

+ 𝛼Ψ𝑛
(1)

+ 𝛼2Ψ𝑛
(2)

+ 𝛼3Ψ𝑛
(3)

+

 𝛼4Ψ𝑛
(4)

… . . ) = 0                             (14) 
 

which becomes after collecting like terms of the same 
order in ∝, 
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(𝐻̂0 − 𝐸𝑛
(𝑜)

)Ψ𝑛
(0)

+  𝛼[(𝐻̂(1) − 𝐸𝑛
(1)

)Ψ𝑛
(0)

+ (𝐻̂(0) −

𝐸𝑛
(𝑜)

)Ψ𝑛
(1)

] + 𝛼2[(𝐻̂(0)Ψ𝑛
(3)

+  𝐻̂(1)Ψ𝑛
(1)

−  𝐸𝑛
(0)

Ψ𝑛
(3)

−

 𝐸𝑛
(1)

Ψ𝑛
(2)

−  𝐸𝑛
(2)

Ψ𝑛
(1)

)] +  𝛼3[(𝐻̂(0)Ψ𝑛
(3)

+ 𝐻̂(1)Ψ𝑛
(2)

−

 𝐸𝑛
(0)

Ψ𝑛
(3)

−  𝐸𝑛
(1)

Ψ𝑛
(2)

−  𝐸𝑛
(2)

Ψ𝑛
(1)

−  𝐸𝑛
(3)

Ψ𝑛
(0)

)]  +

 𝛼4[(𝐻̂(0)Ψ𝑛
(4)

+ 𝐻̂(1)Ψ𝑛
(3)

−  𝐸𝑛
(0)

Ψ𝑛
(4)

− 𝐸𝑛
(1)

Ψ𝑛
(3)

−

 𝐸𝑛
(2)

Ψ𝑛
(2)

−  𝐸𝑛
(3)

Ψ𝑛
(1)

−  𝐸𝑛
(4)

Ψ𝑛
(0)

  )] + ⋯  = 0           

                     (15) 
 
Since this equation must be valid for arbitrary values of  𝛼, 
the coefficients must individually vanish, so that we get: 
 

(𝐻̂(0) − 𝐸𝑛
(𝑜)

)Ψ𝑛
(0)

= 0;       (16) 

 

(𝐻̂(1) − 𝐸𝑛
(1)

)Ψ𝑛
(0)

+ (𝐻̂(0) − 𝐸𝑛
(𝑜)

)Ψ𝑛
(1)

= 0;    (17) 

 

𝐻̂(0)Ψ𝑛
(2)

+ 𝐻̂(1)Ψ𝑛
(1)

− 𝐸𝑛
(0)

Ψ𝑛
(2)

− 𝐸𝑛
(1)

Ψ𝑛
1 − 𝐸𝑛

(2)
Ψ𝑛

(0)
= 0;                                

   (18) 
 

𝐻̂(0)Ψ𝑛
(3)

+ 𝐻̂(1)Ψ𝑛
(2)

− 𝐸𝑛
(0)

Ψ𝑛
(3)

− 𝐸𝑛
(1)

Ψ𝑛
(2)

− 𝐸𝑛
(2)

Ψ𝑛
(1)

−

 𝐸𝑛
(3)

Ψ𝑛
(0)

= 0;           (19) 

 

𝐻̂(0)Ψ𝑛
(4)

+ 𝐻̂(1)Ψ𝑛
(3)

− 𝐸𝑛
(0)

Ψ𝑛
(4)

− 𝐸𝑛
(1)

Ψ𝑛
(3)

− 𝐸𝑛
(2)

Ψ𝑛
(2)

−

 𝐸𝑛
(3)

Ψ𝑛
(1)

− 𝐸𝑛
(4)

Ψ𝑛
(0)

 = 0.             (20) 

 
Equation (16) is just the zero-order equation of the 
unperturbed system, and all of these zero-order quantities 
are known exactly. 
 
 
NONDEGENERATE FIRST –ORDER PERTURBATION 
THEORY 
 
In equation (17), the first-order quantities are related to the 
zero-order quantities. To find the first-order quantities, 

scalar product of equation (17) with Ψ𝑛
(0)

 is taken to obtain 

(Marston and Affleck, 1998): 

 

〈Ψ𝑛
(0)

|𝐻̂(0)|Ψ𝑛
(1)〉 − 𝐸𝑛

(1)
⟨Ψ𝑛

(0)
|Ψ𝑛

(0)
⟩ +  ⟨Ψ𝑛

(0)
|𝐻̂(0)|Ψ𝑛

(1)
⟩ −

𝐸𝑛
(0)

⟨Ψ𝑛
(0)

|Ψ𝑛
(1)

⟩ = 0      (21) 

 
Using the Hermitian property of 𝐻̂(0) in the third term of 
equation (21), we have:  

 

⟨Ψ𝑛
(0)

|𝐻̂(0)|Ψ𝑛
(1)

⟩ =  ⟨𝐻̂(0)Ψ𝑛
(0)

|Ψ𝑛
(1)

⟩ =  𝐸𝑛
(0)

⟨Ψ𝑛
(0)

|Ψ𝑛
(1)

⟩    (22) 

 
so that the third term cancels the fourth term of equation 

(21); then since Ψ𝑛
(0)

 is normalised, we find: 

 

𝐸𝑛
(1)

=  
⟨Ψ𝑛

(0)
|𝐻̂(1)

|Ψ𝑛
(0)

⟩

⟨Ψ𝑛
(0)

|Ψ𝑛
(0)

⟩
  =  ⟨Ψ𝑛

(0)
|𝐻̂(1)|Ψ𝑛

(0)
⟩     = 𝐻̂(1)     (23) 
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so that the first–order correction to the energy is the 
average value of the perturbed energy in the unperturbed 
state. For the first-order wave function, it can be 
represented in terms of the zero-order wave function since 
they form a complete functional set, so that: 
 

Ψ𝑛
(1)

=  ∑ 𝑎𝑛𝑖𝑖 Ψ𝑖
(0)

.   (24) 

 
Inserting equation (24) into equation (17), the first-order 
equation can be written as: 
 

𝐻̂(1)Ψ𝑛
(0)

+  𝐻̂(0)  ∑ 𝑎𝑛𝑖𝑖 Ψ𝑖
(0)

=  𝐸𝑛
(1)

Ψ𝑛
(0)

+ 𝐸𝑛
(0) ∑ 𝑎𝑛𝑖𝑖 Ψ𝑖

(0)
       (25) 

 

Since 𝑖 ≠ 𝑛, 𝑎𝑛𝑛 = 0 𝑎𝑛𝑑 Ψ𝑘
(0)

=  ⟨𝐾|, therefore equation 

(25) becomes:  
 

⟨𝐾|𝐻̂(1)|𝑛⟩ + ∑ 𝑎𝑛𝑖𝑖 ⟨𝐾|𝐻̂(0)|𝑖⟩ = 𝐸𝑛
(1)

⟨𝐾|𝑛⟩ +  𝐸𝑛
(0)

 ∑ 𝑎𝑛𝑖𝑖 ⟨𝐾|𝑖⟩             

       (26) 
 
Since the kets and bras are Eigen functions, three of the 
integrals reduce to Kronecker delta functions, and we get: 

 

⟨𝐾|𝐻̂(1)|𝑛⟩ + ∑ 𝑎𝑛𝑖𝑖 𝐸𝑖
(0)

𝛿𝑘𝑖 =  𝐸𝑛
(𝑖)

𝛿𝑘𝑛 +  𝐸𝑜
(𝑛) ∑ 𝑎𝑛𝑖𝑖 𝛿𝑘𝑖          (27) 

 
The  𝛿𝑘𝑖 functions cancel out the summations, and we get: 
 

𝐻𝐾𝑛
(1)

+  𝑎𝑛𝑘𝐸𝐾
(0)

=  𝐸𝑛
(1)

 𝛿𝐾𝑛 + 𝑎𝑛𝑘𝐸𝐾
(0)

   (28) 

 
For K = n, Equation (28) becomes:  

 

𝐸𝑛
(1)

=  𝐻𝑛𝑛
(1)

.      (29) 

 
For K ≠ 𝑛, Equation (28) becomes 
 

𝐻𝐾𝑛
(1)

=  𝑎𝑛𝑘( 𝐸𝑛
(0)

− 𝐸𝐾
(0)

)     (30) 

 

In the non-degenerate case, 𝐸𝐾
(0)

  ≠   𝐸𝑛
(0)

 such that the 

𝑎𝑛𝑘′𝑠 are finite. In the degenerate case, 𝐸𝐾
(0)

= 𝐸𝑛
(0)

 such 

that the 𝑎𝑛𝑘′𝑠 are infinite which are not physically 
acceptable. 

 
 
NON-DEGENERATE SECOND-ORDER PERTURBATION 
THEORY 

 

Sometimes in some physical cases, 𝐻𝑛𝑛
(1)

= 0, so in order 

to find the lowest order of non-zero correction, we must 
proceed to the second order in perturbation theory (Avron 

et al., 1994; Abrikosov et al., 1995).  In this regard, let Ψ𝑛
(2)

 

be expanded in the same basis set, so that we have: 
 

Ψ𝑛
(2)

=  ∑ 𝑏𝑛𝑗𝑗 Ψ𝑗
(0)

     (31) 

 
Thus, equation (18) becomes: 

 
 
 
 

𝐻̂(0) ∑ 𝑏𝑛𝑗𝑗 Ψ𝑗
(0)

+ 𝐻̂(1) ∑ 𝑎𝑛𝑖𝑖 Ψ𝑖
(0)

 −  𝐸𝑛
(0) ∑ 𝑏𝑛𝑗𝑗 Ψ𝑗

(0)
−

𝐸𝑛
(1) ∑ 𝑎𝑛𝑖𝑖 Ψ𝑖

(0)
− 𝐸𝑛

(2)
Ψ𝑛

(0)
= 0             (32) 

 
In equation (32), taking the scalar product with ⟨𝐾|, we get: 
 

∑ 𝑏𝑛𝑗⟨𝐾|𝐻̂(𝑜)|𝑗⟩𝑗 + ∑ 𝑎𝑛𝑖𝑖 ⟨𝐾|𝐻̂(1)|𝑗⟩ =  𝐸𝑛
(0) ∑ 𝑏𝑛𝑗𝑗 ⟨𝐾|𝑗⟩ +

𝐸𝑛
(1)

 ∑ 𝑎𝑛𝑖𝑖 ⟨𝐾|𝑖⟩ +  𝐸𝑛
(2)⟨𝐾|𝑛⟩.                (33) 

 
In Equation (33), the integrals lead to Kronecker delta 
functions such that we get: 
 

∑ 𝑏𝑛𝑗𝑗 𝐸𝑗
(0)

𝛿𝐾𝑗 + ∑ 𝑎𝑛𝑖𝑖 H𝑘
(𝑖)

=  𝐸𝑛
(0) ∑ 𝑏𝑛𝑗𝑗  𝛿𝐾𝑗 +

𝐸𝑛
(1) ∑ 𝑎𝑛𝑖𝛿𝐾𝑖𝑖 +  𝐸𝑛

(2)
𝛿𝐾𝑛                                (34) 

 
In equation (34), all the summations are cancelled out by 
the Kronecker delta functions except one leading to: 
 

𝑏𝑛𝑘  𝐸𝐾
(0)

+  ∑ 𝑎𝑛𝑖𝑖 H𝐾𝑖
(1)

=  𝐸𝑛
(0) ∑ 𝑏𝑛𝑗𝑗 𝛿𝐾𝑗  + 𝐸𝑛

(1) ∑ 𝑎𝑛𝑖𝑖 𝛿𝐾𝑖 +

 𝐸𝑛
(2)

𝛿𝐾𝑛                                          (35) 

 
For k=n, equation (35) gives the second-order energy 
correction as: 
 

𝐸𝑛
(2)

=  ∑ 𝑎𝑛𝑖𝑖 𝐻𝑛𝑖
(1)

− 𝑎𝑛𝑛𝐸𝑛
(1)

 =  ∑ 𝑎𝑛𝑖𝑖 𝐻𝑛𝑖
(1)

−  𝑎𝑛𝑛𝐻𝑛𝑛
(1)

    =

 ∑ 𝑎𝑛𝑖𝑖≠𝑛 𝐻𝑛𝑖
(1)

                          (36) 

 
Recall from equation (30), that: 

 

𝑎𝑛𝐾 =  
𝐻𝐾𝑛

(1)

( 𝐸𝑛
(0)

− 𝐸𝐾
(0)

)
           (37) 

 
Hence, similarly, we have: 

 

𝑎𝑛𝑖 =  
𝐻𝑖𝑛

(1)

( 𝐸𝑛
(0)

− 𝐸
𝑖
(0)

)
                                    (38) 

 
Using equation (38), equation (36) can be written as: 

 

𝐸𝑛
(2)

=  ∑
𝐻𝑖𝑛

(1)
𝐻𝑛𝑖

(1)

( 𝐸𝑛
(0)

− 𝐸
𝑖
(0)

)
𝑖 ≠𝑛           (39) 

 
It should be noted here that the second-order energy 
correction has been obtained with only the first-order wave 
functions, just as the first-order energy correction was 
obtained with only the zero-order wave functions. To 
obtain the second-order wave functions, equation (35) is 
examined with k  ≠ 𝑛. This gives:  

 

𝑏𝑛𝑘 ( 𝐸𝐾
(0)

− 𝐸𝑛
(0)

) =  𝑎𝑛𝐾𝐻𝑛𝑖
(1)

−  ∑ 𝑎𝑛𝑖𝑖 𝐻𝐾𝑖
(1)

   or 

 

𝑏𝑛𝑘 =  ∑
𝐻𝑖𝑛

(1)
𝐻𝐾𝑖

(1)

( 𝐸𝑛
(0)

− 𝐸𝐾
(0)

)( 𝐸𝑛
(0)

− 𝐸𝑖
(0)

)
𝑖 ≠𝑛 −  

𝐻𝐾𝑛
(1)

𝐻𝑛𝑛
(1)

( 𝐸𝑛
(0)

− 𝐸𝐾
(0)

)2
   

             (40) 



 
 
 
 
The higher order wave functions are given by: 
 

Ψ𝑛 = Ψ𝑛
(0)

+  ∑ 𝑎𝑛𝐾𝑘 ≠𝑛 Ψ𝑘
(0)

+  ∑ 𝑏𝑛𝐾𝑘 ≠𝑛 Ψ𝑘
(0)

  (41) 

 
Or 
 

Ψ𝑛 = Ψ𝑛
(0)

 +  ∑ 𝑎𝑛𝑖𝑖 ≠𝑛 Ψ𝑖
(0)

+  ∑ 𝑏𝑛𝑗𝑗 ≠𝑛 Ψ𝑗
(0)

 (42) 

 
 
NONDEGENERATE THIRD-ORDER PERTURBATION 
THEORY 

 

In some cases, 𝐻𝑛𝑛
(2)

= 0, therefore, in order to obtain the 

lowest order nonzero correction, we must proceed to third-
order in perturbation theory. Here again, we will expand 

Ψ𝑛
(3)

 in the same basis set, such that we have:  

 

Ψ𝑛
(3)

=  ∑ 𝐶𝑛𝑝𝑝 Ψ𝑝
(0)

           (43) 

 
Inserting equation (43) into equation (19), we get: 
 

𝐻̂0 ∑ 𝐶𝑛𝑝𝑝 Ψ𝑝
(0)

+ 𝐻̂1 ∑ 𝑏𝑛𝑗𝑗 Ψ𝑗
(0)

− E𝑛
(0)

 ∑ 𝐶𝑛𝑝𝑝 Ψ𝑝
(0)

−

 E𝑛
(1) ∑ 𝑏𝑛𝑗𝑗 Ψ𝑗

(0)
− E𝑛

(2) ∑ 𝑎𝑛𝑖𝑖 Ψ𝑖
(0)

− E𝑛
(3)

Ψ𝑛
(0)

= 0        (44) 

 
Taking the scalar product of equation (44) with ⟨𝐾|, such 
that the third-order perturbation equation becomes: 
 

∑ 𝐶𝑛𝑝𝑝 ⟨𝐾|𝐻̂(0)|𝑝⟩ + ∑ 𝑏𝑛𝑗𝑗 ⟨𝐾|𝐻̂(1)|𝑗⟩ = E𝑛
(0)

 ∑ 𝐶𝑛𝑝𝑝 ⟨𝐾|𝑝⟩ +

E𝑛
(1) ∑ 𝑏𝑛𝑗𝑗 ⟨𝐾|𝑗⟩ + E𝑛

(2) ∑ 𝑎𝑛𝑖⟨𝐾|𝑖⟩𝑖 + E𝑛
(3)

⟨𝐾|𝑛⟩                   (45)    

                                                                                                                                            
The integral leads to Kronecker delta functions such that 
we obtain: 

 

∑ 𝐶𝑛𝑝𝑝 E𝑝
(0)

𝛿𝐾𝑝 + ∑ 𝑏𝑛𝑗𝑗  H𝐾𝑗
(1)

= E𝑛
(0) ∑ 𝐶𝑛𝑝𝑝 𝛿𝐾𝑝 +

E𝑛
(1) ∑ 𝑏𝑛𝑗𝑗 𝛿𝐾𝑗 + E𝑛

(2) ∑ 𝑎𝑛𝑖𝛿𝐾𝑖𝑖 + E𝑛
(3)

𝛿𝐾𝑛                   (46)       

 
In equation (46), all the summation signs are neutralised 
by the Kronecker delta functions with the exception of only 
one, such that we get: 

 

𝐶𝑛𝑝E𝑝
(0)

+  𝑏𝑛𝑗H𝐾𝑗
(1)

= E𝑛
(0)

 𝐶𝑛𝑝 + E𝑛
(1)

 𝑏𝑛𝑗 + E𝑛
(2)

𝑎𝑛𝑖 + E𝑛
(3)

𝛿𝐾𝑛    

      (47) 
 
For K = n, equation (47) yields the third-order energy 
correction as follows: 

 

𝐶𝑛𝑝E𝑝
(0)

+ 𝑏𝑛𝑗H𝑛𝑗
(1)

= E𝑛
(0)

 𝐶𝑛𝑝 + E𝑛
(1)

 𝑏𝑛𝑗 + E𝑛
(2)

𝑎𝑛𝑖 + E𝑛
(3)

𝛿𝑛𝑛   

⟹ 𝐶𝑛𝑝(E𝑛
(0)

−E𝑝
(0)

) + E𝑛
(3)

= 𝑏𝑛𝑗H𝑛𝑗
(1)

− E𝑛
(1)

 𝑏𝑛𝑗 − E𝑛
(2)

𝑎𝑛𝑖    

 

 ∴ E𝑛
(3)

= 𝑏𝑛𝑗H𝑛𝑗
(1)

− 𝐶𝑛𝑝 (E𝑛
(0)

−E𝑝
(0)

) − E𝑛
(1)

 𝑏𝑛𝑗 − E𝑛
(2)

𝑎𝑛𝑖      (48) 

 
But we know that: 
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𝑎𝑛𝑖 =  
H𝑖𝑛

(1)

(E𝑛
(0)

−E𝑖
(0)

)
         (49) 

 

𝑏𝑛𝑗 =  ∑
H𝑖𝑛

(1)
H𝑗𝑖

(1)

(E𝑛
(0)

−E𝑗
(0)

)(E𝑛
(0)

−E𝑖
(0)

)
𝑖≠𝑛 −

H𝑗𝑛
(1)

H𝑛𝑛
(1)

(E𝑛
(0)

−E𝑗
(0)

)
2     (50) 

 

𝐶𝑛𝑝 =  ∑
H𝑖𝑛

(1)
H𝑗𝑖

(1)
H𝑝𝑖

(1)

(E𝑛
(0)

−E𝑗
(0)

)(E𝑛
(0)

−E𝑖
(0)

)(E𝑛
(0)

−E𝑝
(0)

)
𝑖≠𝑛 −

H𝐾𝑛
(1)

H𝑛𝑛
(1)

H𝑝𝑛
(1)

(E𝑛
(0)

−E𝑝
(0)

)
3 

                (51) 
 

Substituting equations (49-51) in equation (48) we get: 
 

 E𝑛
(3)

= ∑
H𝑖𝑛

(1)
H𝑗𝑖

(1)
H𝑛𝑗

(1)

(E𝑛
(0)

−E𝑗
(0)

)(E𝑛
(0)

−E𝑖
(0)

)
𝑖≠𝑛 −

H𝑗𝑛
(1)

H𝑛𝑛
(1)

H𝑛𝑗
(1)

(E𝑛
(0)

−E𝑗
(0)

)
2 −

∑
H𝑖𝑛

(1)
H𝑗𝑖

(1)
H𝑝𝑖

(1)
(E𝑛

(0)
−E𝑝

(0)
)

(E𝑛
(0)

−E𝑗
(0)

)(E𝑛
(0)

−E𝑖
(0)

)(E𝑛
(0)

−E𝑝
(0)

)
𝑖≠𝑛 +

H𝐾𝑛
(1)

H𝑛𝑛
(1)

H𝑝𝑛
(1)

(E𝑛
(0)

−E𝑝
(0)

)

(E𝑛
(0)

−E𝑝
(0)

)
3 −

 ∑
H𝑖𝑛

(1)
H𝑗𝑖

(1)
(E𝑛

(1)
)

(E𝑛
(0)

−E𝑗
(0)

)(E𝑛
(0)

−E𝑖
(0)

)
𝑖≠𝑛 −

H𝑗𝑛
(1)

H𝑛𝑛
(1)

(E𝑛
(1)

)

(E𝑛
(0)

−E𝑗
(0)

)
2 −

H𝑖𝑛
(1)

E𝑛
(2)

(E𝑛
(0)

−E𝑖
(0)

)
        (52) 

 
or, we have: 
 

 E𝑛
(3)

= ∑
H𝑖𝑛

(1)
H𝑗𝑖

(1)
H𝑛𝑗

(1)

(E𝑛
(0)

−E𝑗
(0)

)(E𝑛
(0)

−E𝑖
(0)

)
𝑖≠𝑛 −

|H𝑗𝑛
(1)

|
2

H𝑛𝑛
(1)

(E𝑛
(0)

−E𝑗
(0)

)
2 −

∑
H𝑖𝑛

(1)
H𝑗𝑖

(1)
H𝑝𝑖

(1)

(E𝑛
(0)

−E𝑗
(0)

)(E𝑛
(0)

−E𝑖
(0)

)
𝑖≠𝑛 +

H𝐾𝑛
(1)

H𝑛𝑛
(1)

H𝑝𝑛
(1)

(E𝑛
(0)

−E𝑝
(0)

)
2 − ∑

𝑎𝑛𝑖H𝑛𝑖
(1)

H𝑖𝑛
(1)

(E𝑛
(0)

−E𝑖
(0)

)
𝑖≠𝑛  

                                               (53) 
 

We can substitute for 𝑎𝑛𝑖 in the last term of equation (53), 
where: 
 

𝑎𝑛𝑖 =  
H𝑖𝑛

(1)

E𝑛
(0)

−E𝑖
(0)  

 

Equation (53) is the non-degenerate third-order energy 
correction for the atomic (quantum mechanical) system. 
The wave function correction for third-order perturbation is: 
 

Ψ𝑛
(3)

= Ψ𝑛
(0)

 +  ∑ 𝑎𝑛𝑖𝑖 ≠𝑛 Ψ𝑖
(0)

+  ∑ 𝑏𝑛𝑗𝑗 ≠𝑛 Ψ𝑗
(0)

+

∑ 𝐶𝑛𝑝𝑝 ≠𝑛 Ψ𝑝
(0)

                          (54) 

 
 

NON-DEGENERATE FOURTH-ORDER PERTURBATION 
THEORY 
 

In some physical cases,  H𝑛𝑛
(3)

= 0, hence in order to obtain 

the lowest order nonzero correction, it is necessary to 

proceed to fourth order in perturbation theory. Ψ𝑛
(4)

 is 

expanded in the similar basis set, and we get: 
 

Ψ𝑛
(4)

= ∑ 𝑑𝑛𝑞Ψ𝑞
(0)

𝑞 .                  (55) 
 

Let us insert equation (55) into equation (20). Then we 
obtain: 
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𝐻̂(0) ∑ 𝑑𝑛𝑞Ψ𝑞
(0)

𝑞 +  𝐻̂(1) ∑ 𝐶𝑛𝑞Ψ𝑞
(0)

𝑞 − E𝑛
(0) ∑ 𝑑𝑛𝑞Ψ𝑞

(0)
𝑞 −

 E𝑛
(1) ∑ 𝐶𝑛𝑞Ψ𝑞

(0)
𝑞 − E𝑛

(2) ∑ 𝑏𝑛𝑗Ψ𝑗
(0)

− 𝑗 E𝑛
(3) ∑ 𝑎𝑛𝑖Ψ𝑖

(0)
−𝑖 

 E𝑛
(4)

Ψ𝑛
(0)

= 0                        (56) 

 
Taking the scalar product of equation (56) with ⟨𝐾|, such 
that the forth-order perturbation equation becomes: 
 

∑ 𝑑𝑛𝑞𝑞 ⟨𝐾|𝐻̂(0)|𝑞⟩ + ∑ 𝐶𝑛𝑝𝑝 ⟨𝐾|𝐻̂(1)|𝑝⟩ =

E𝑛
(0)

 ∑ 𝑑𝑛𝑞𝑝 ⟨𝐾|𝑞⟩ + E𝑛
(1)

 ∑ 𝐶𝑛𝑝𝑝 ⟨𝑝|𝐾⟩ +

E𝑛
(2)

 ∑ 𝑏𝑛𝑗𝑗 ⟨𝐾|𝑗⟩ + E𝑛
(3)

 ∑ 𝑎𝑛𝑖𝑖 ⟨𝐾|𝑖⟩ + E𝑛
(4)

 ⟨𝐾|𝑛⟩  

                           (57) 
 
The integrals yield Kronecker delta functions so that we 
get: 

 

∑ 𝑑𝑛𝑞𝑞 E𝑞
(0)

𝛿𝐾𝑞 + ∑ 𝐶𝑛𝑝𝑝 H𝐾𝑝
(1)

= E𝑛
(0) ∑ 𝑑𝑛𝑞𝑞 𝛿𝐾𝑞 +

 E𝑛
(1) ∑ 𝐶𝑛𝑝𝑝 𝛿𝐾𝑝 + E𝑛

(2) ∑ 𝑏𝑛𝑗𝑗 𝛿𝐾𝑗 + E𝑛
(3) ∑ 𝑎𝑛𝑖𝑖 𝛿𝐾𝑖 + E𝑛

(4)
𝛿𝐾𝑛      

                                                      (58) 

 
In equation (58), all the summation signs are cancelled out 
by the Kronecker delta functions excluding one, such that 
we have: 

 

𝑑𝑛𝑞E𝑞
(0)

+ 𝐶𝑛𝑝H𝐾𝑝
(1)

= E𝑛
(0)

𝑑𝑛𝑞 + E𝑛
(1)

𝐶𝑛𝑝 + E𝑛
(2)

𝑏𝑛𝑗 +

E𝑛
(3)

𝑎𝑛𝑖 + E𝑛
(4)

𝛿𝐾𝑛                    (59) 

 
For K = n, equation (59) gives us the third-order energy 
correction as follows: 

 

𝑑𝑛𝑞E𝑞
(0)

+ 𝐶𝑛𝑝H𝑛𝑝
(1)

= E𝑛
(0)

𝑑𝑛𝑞 + E𝑛
(1)

𝐶𝑛𝑝 + E𝑛
(2)

𝑏𝑛𝑗 +

E𝑛
(3)

𝑎𝑛𝑖 + E𝑛
(4)

𝛿𝑛𝑛  

 

⟹ 𝑑𝑛𝑞(E𝑞
(0)

− E𝑛
(0)

) + 𝐶𝑛𝑝(H𝑛𝑝
(1)

− E𝑛
(1)

) − E𝑛
(2)

𝑏𝑛𝑗 −

E𝑛
(3)

𝑎𝑛𝑖 =  E𝑛
(4)

             (60) 

 
But we know that: 

 

𝑎𝑛𝑖 =
H𝑖𝑛

(1)

(E𝑛
(0)

−E
𝑖
(0)

)
            (61) 

 

𝑏𝑛𝑗 = ∑
H𝑖𝑛

(1)
H𝑗𝑖

(1)

(E𝑛
(0)

−E𝑗
(0)

)(E𝑛
(0)

−E𝑖
(0)

)
 − [

H𝑗𝑛
(1)

H𝑛𝑛
(1)

(E𝑛
(0)

−E𝑗
(0)

)
2]𝑖≠𝑛   

                (62) 
 

𝐶𝑛𝑝 = ∑
H𝑖𝑛

(1)
H𝑗𝑖

(1)
H𝑝𝑖

(1)

(E𝑛
(0)

−E𝑗
(0)

)(E𝑛
(0)

−E𝑖
(0)

)(E𝑛
(0)

−E𝑝
(0)

)
 −𝑖≠𝑛 

H𝐾𝑛
(1)

H𝑛𝑛
(1)

H𝑝𝑛
(1)

(E𝑛
(0)

−E𝑝
(0)

)
3 

                         (63) 
 

𝑑𝑛𝑞 = ∑
H𝑖𝑛

(1)
H𝑖𝑗

(1)
H𝑖𝑝

(1)
H𝑞𝑖

(1)

(E𝑛
(0)

−E𝑖
(0)

)(E𝑛
(0)

−E𝑗
(0)

)(E𝑛
(0)

−E𝑝
(0)

)(E𝑛
(0)

−E𝑞
(0)

)
 −𝑖≠𝑛 

H𝐾𝑛
(1)

H𝑛𝑛
(1)

H𝑝𝑛
(1)

H𝑞𝑛
(1)

(E𝑛
(0)

−E𝑞
(0)

)
4   

                 (64) 

 
 
 
 
Substituting equations (61-64) in equation (60), we obtain 
the fourth-order perturbation energy correction as follows: 
 

E𝑛
(4)

=  
−E𝑛

(3)
H𝑖𝑛

(1)

(E𝑛
(0)

−E𝑖
(0)

)
− E𝑛

(2)
{∑

H𝑖𝑛
(1)

H𝑗𝑖
(1)

(E𝑛
(0)

−E𝑗
(0)

)(E𝑛
(0)

−E𝑖
(0)

)
 − [

H𝑗𝑛
(1)

H𝑛𝑛
(1)

(E𝑛
(0)

−E𝑗
(0)

)
2]𝑖≠𝑛 } + (H𝑛𝑝

(1)
−

E𝑛
(1)

) {∑
H𝑖𝑛

(1)
H𝑗𝑖

(1)
H𝑝𝑖

(1)

(E𝑛
(0)

−E
𝑗
(0)

)(E𝑛
(0)

−E
𝑖
(0)

)(E𝑛
(0)

−E𝑝
(0)

)
 −𝑖≠𝑛 

H𝐾𝑛
(1)

H𝑛𝑛
(1)

H𝑝𝑛
(1)

(E𝑛
(0)

−E𝑝
(0)

)
3} + (E𝑞

(0)
−

E𝑛
(0)

) {∑
H𝑖𝑛

(1)
H𝑖𝑗

(1)
H𝑖𝑝

(1)
H𝑞𝑖

(1)

(E𝑛
(0)

−E
𝑖
(0)

)(E𝑛
(0)

−E
𝑗
(0)

)(E𝑛
(0)

−E𝑝
(0)

)(E𝑛
(0)

−E𝑞
(0)

)
 −𝑖≠𝑛 

H𝐾𝑛
(1)

H𝑛𝑛
(1)

H𝑝𝑛
(1)

H𝑞𝑛
(1)

(E𝑛
(0)

−E𝑞
(0)

)
4 }         (65) 

 
Equation (65) is the non-degenerate (i.e., energy level i≠
𝑒𝑛𝑒𝑟𝑔𝑦 𝑙𝑒𝑣𝑒𝑙 𝑛) fourth –order energy correction for the 
quantum (atomic) system. 
 
The wave function correction for the fourth-order 
perturbation is: 
 

Ψ𝑛 = Ψ𝑛
(0)

 +  ∑ 𝑎𝑛𝑖𝑖 ≠𝑛 Ψ𝑖
(0)

+  ∑ 𝑏𝑛𝑗𝑗 ≠𝑛 Ψ𝑗
(0)

+

∑ 𝐶𝑛𝑝𝑝 ≠𝑛 Ψ𝑝
(0)

+ ∑ 𝑑𝑛𝑞𝑞 ≠𝑛 Ψ𝑞
(0)

          (66) 

 
 

RESULTS AND DISCUSSIONS 
 

The first-order energy correction for the Hamiltonian or 
total energy of the electron in an atom or multi-electron 
quantum system is: 
 

E𝑛
(1)

=  〈𝐻̂(1)〉            (67) 
 

The second-order energy correction is given by: 
 

𝐸𝑛
(2)

=  ∑
𝐻𝑖𝑛

(1)
𝐻𝑛𝑖

(1)

( 𝐸𝑛
(0)

− 𝐸
𝑖
(0)

)
𝑖 ≠𝑛  .          (68) 

 

The first-order wave function is:  
 

Ψ𝑛
(1)

=  Ψ𝑛
(0)

+  ∑ 𝑎𝑛𝑖𝑖 Ψ𝑖
(0)

.          (69) 
 

The second-order wave function is: 
 

Ψ𝑛 = Ψ𝑛
(0)

 +  ∑ 𝑎𝑛𝑖𝑖 ≠𝑛 Ψ𝑖
(0)

+  ∑ 𝑏𝑛𝑗𝑗 ≠𝑛 Ψ𝑗
(0)

.        (70) 

 

The derived expressions, from basic principles, for the 
third-order and fourth –order energy corrections and 
corresponding wave functions are presented as follows 
here: 
 

The third –order wave functions are given by: 
 

Ψ𝑛
(3)

= Ψ𝑛
(0)

 +  ∑ 𝑎𝑛𝑖𝑖 ≠𝑛 Ψ𝑖
(0)

+  ∑ 𝑏𝑛𝑗𝑗 ≠𝑛 Ψ𝑗
(0)

+

∑ 𝐶𝑛𝑝𝑝 ≠𝑛 Ψ𝑝
(0)

                      (71) 

 

The fourth –order wave functions are given by: 
 

Ψ𝑛
(4)

= Ψ𝑛
(0)

 +  ∑ 𝑎𝑛𝑖𝑖 ≠𝑛 Ψ𝑖
(0)

+  ∑ 𝑏𝑛𝑗𝑗 ≠𝑛 Ψ𝑗
(0)

+

∑ 𝐶𝑛𝑝𝑝 ≠𝑛 Ψ𝑝
(0)

+ ∑ 𝑑𝑛𝑞𝑞 ≠𝑛 Ψ𝑞
(0)

           (72) 
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Figure 1. Organization or levels of use and accuracy of the orders of quantum system perturbations. 
 
 
 

 
 

Figure 2. Illustrations of the conditional levels of use of the four orders of non-degenerate quantum system perturbations. 
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The third –order energy correction is found to be: 
 

 E𝑛
(3)

= ∑
H𝑖𝑛

(1)
H𝑗𝑖

(1)
H𝑛𝑗

(1)

(E𝑛
(0)

−E𝑗
(0)

)(E𝑛
(0)

−E𝑖
(0)

)
𝑖≠𝑛 −

|H𝑗𝑛
(1)

|
2

H𝑛𝑛
(1)

(E𝑛
(0)

−E𝑗
(0)

)
2 −

∑
H𝑖𝑛

(1)
H𝑗𝑖

(1)
H𝑝𝑖

(1)

(E𝑛
(0)

−E𝑗
(0)

)(E𝑛
(0)

−E𝑖
(0)

)
𝑖≠𝑛 +

H𝐾𝑛
(1)

H𝑛𝑛
(1)

H𝑝𝑛
(1)

(E𝑛
(0)

−E𝑝
(0)

)
2 − ∑

|𝐻𝑖𝑛|2.𝐻𝑛𝑖

(E𝑛
(0)

−E𝑖
(0)

)
2𝑖≠𝑛                                                                                                   

(73) 
 
The fourth –order perturbation energy correction is given 
by equation (65). 
 
 

Figure 1 depicts the hierarchical levels of selection and 
relationship between the perturbation orders and Figure 2 
shows the Illustrations of the conditions and levels of use 
of the four orders of non-degenerate quantum system  
 
perturbations. 

 
 
CONCLUSIONS 

 
In this paper, the various causes of perturbations of total 
energy and wave functions in atomic (quantum) systems 
have identified.  The expressions or formulas for 
calculating the approximately exact values for total 
energies and wave functions of particles under third-order 
and fourth–order perturbations have been derived, that is, 
third-order and fourth–order energy corrections and 
corresponding wave functions are presented. This serves 
as a step forward in the dynamic field of Physics and is 
ahead of texts and journals that so far treat perturbations 
from zeroth-order, first-order, to second-order. Thus, if this 
research work is implemented and improved upon by 
scientists, we shall succeed in our drive to eliminate 
unwanted perturbations in quantum systems. 
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