ISSN: 2756-6684
Model: Open Access/Peer Reviewed
DOI: 10.31248/AJPS
Start Year: 2018
Email: ajps@integrityresjournals.org
https://doi.org/10.31248/AJPS2023.088 | Article Number: 90B552FF3 | Vol.5 (2) - April 2023
Received Date: 27 January 2023 | Accepted Date: 12 April 2023 | Published Date: 30 April 2023
Authors: Cornelius Ogabi , Tijani Shehu , Babatunde Idowu , Rilwan Mustapha , Olasunkanmi Kesinro* and Shu’aibu Muhammad
Keywords: Chaos control, hyperchaos, linear matrix inequalities, Lyapunov exponents, Lyapunov stability, synchronization
It has been widely observed that most deterministic dynamical systems go into chaos for some values of their parameters. One of the most popular and widely used criteria is the conditional Lyapunov exponents, which constitute average measurements of expansion or shrinkage of small displacements along the synchronized trajectory. The Lyapunov characteristic exponents play a crucial role in the description of the behaviour of dynamical systems as they can be used to analyse the stability limit sets and to check sensitive dependence on initial conditions, that is, the presence of chaotic attractors. In this paper, Lyapunov stability theory and linear matrix inequalities (LMI) are employed to design control functions for the respective, control, and synchronization of the chaotic and hyperchaotic finance systems. The designed linear matrix inequalities (LMI) nonlinear controllers are capable of stabilizing the chaotic and hyperchaotic finance systems at any position as well as controlling it to track any trajectory that is a smooth function of time. The respective chaotic attractors were found to have a moderate value of the largest Lyapunov exponents (0.874959s-1 and 0.650847s-1) with associated (Lyapunov) dimensions of 1.00 and 2.00 for the chaotic and hyperchaotic finance systems respectively. Based on Lyapunov stability theory and linear matrix inequalities (LMI), some necessary and sufficient criteria for stable synchronous behaviour are obtained and an exact analytic estimate of the threshold coupling,, for complete chaos synchronization is derived. Finally, numerical simulation results are presented to validate the feasibility of the theoretical analysis.
Achouri, H., Aouiti, C., & Hamed, B. B. (2020). Bogdanov-Takens bifurcation in a neutral delayed Hopfield neural network with bidirectional connection. International Journal of Biomathematics, 13(06), Article number 2050049. Crossref |
||||
Ahmad, I., & Shafiq, M. (2020). Robust adaptive anti-synchronization control of multiple uncertain chaotic systems of different orders. Automatika, 61(3), 396-414. Crossref |
||||
Anand, P., & Sharma, B. B. (2023). Generalized finite-time synchronization scheme for a class of nonlinear systems using backstepping like control strategy. International Journal of Dynamics and Control, 11(1), 258-270. Crossref |
||||
Aouiti, C., Bessifi, M., & Li, X. (2020). Finite-time and fixed-time synchronization of complex-valued recurrent neural networks with discontinuous activations and time-varying delays. Circuits, Systems, and Signal Processing, 39, 5406-5428. Crossref |
||||
Balootaki, M. A., Rahmani, H., Moeinkhah, H., & Mohammadzadeh, A. (2020). On the synchronization and stabilization of fractional-order chaotic systems: recent advances and future perspectives. Physica A: Statistical Mechanics and its Applications, 551, Article number 124203. Crossref |
||||
Boukabou, A. (2008). On nonlinear control and synchronization design for autonomous chaotic systems. Nonlinear Dynamics and Systems Theory, 8, 151-167. | ||||
Boyd, S., El Ghaoui, L., Feron, E., & Balakrishnan, V. (1994). Linear matrix inequalities in system and control theory. Society for industrial and applied mathematics. Crossref |
||||
Cao, Q., & Guo, X. (2020). Anti-periodic dynamics on high-order inertial Hopfield neural networks involving time-varying delays. AIMS Math, 5(6), 5402-5421. Crossref |
||||
Chaudhary, H., & Sajid, M. (2021). Controlling hyperchaos in non-identical systems using active controlled hybrid projective combination-combination synchronization technique. Journal of Mathematical and Computational Science, 12, Article number 30. | ||||
Chen, G., & Dong, X. (1993). From chaos to order-perspectives and methodologies in controlling chaotic nonlinear dynamical systems. International Journal of Bifurcation and Chaos, 3(06), 1363-1409. Crossref |
||||
Chen, H. K. (2002). Chaos and chaos synchronization of a symmetric gyro with linear-plus-cubic damping. Journal of Sound and Vibration, 255(4), 719-740. Crossref |
||||
Chen, L., & Li, J. (2004). Chaotic behavior and subharmonic bifurcations for a rotating pendulum equation. International Journal of Bifurcation and Chaos, 14(10), 3477-3488. Crossref |
||||
Curran, P. F., & Chua, L. O. (1997). Absolute stability theory and the synchronization problem. International Journal of Bifurcation and Chaos, 7(06), 1375-1382. Crossref |
||||
Datseris, G. (2018). DynamicalSystems. jl: A Julia software library for chaos and nonlinear dynamics. Journal of Open Source Software, 3(23), Article number 598. Crossref |
||||
Filali, R. L., Hammami, S., Benrejeb, M., & Borne, P. (2012). On synchronization, anti-synchronization and hybrid synchronization of 3D discrete generalized Hénon map. Nonlinear Dynamics and Systems Theory, 12(1), 81-95. | ||||
Ge, Z. M., & Chen, H. H. (1996). Bifurcations and chaos in a rate gyro with harmonic excitation. Journal of Sound Vibration, 194(1), 107-117. Crossref |
||||
Ge, Z. M., Yu, T. C., & Chen, Y. S. (2003). Chaos synchronization of a horizontal platform system. Journal of Sound and Vibration, 268(4), 731-749. Crossref |
||||
Handa, H., & Sharma, B. B. (2019). Controller design scheme for stabilization and synchronization of a class of chaotic and hyperchaotic systems in uncertain environment using SMC approach. International Journal of Dynamics and Control, 7, 256-275. Crossref |
||||
He, R., & Vaidya, P. G. (1992). Analysis and synthesis of synchronous periodic and chaotic systems. Physical Review A, 46(12), 7387. Crossref |
||||
Horn, R. A., & Johnson, C. R. (1991). Review of topics in matrix analysis. Cambridge University Press, Cambridge, 607. | ||||
Hua, Z., Zhou, B., & Zhou, Y. (2019). Sine chaotification model for enhancing chaos and its hardware implementation. IEEE Transactions on Industrial Electronics, 66(2), 1273-1284. Crossref |
||||
Huang, C., & Tan, Y. (2021). Global behavior of a reaction-diffusion model with time delay and Dirichlet condition. Journal of Differential Equations, 271, 186-215. Crossref |
||||
Idowu, B. A., Vincent, U. E., & Njah, A. N. (2008). Control and synchronization of chaos in nonlinear gyros via backstepping design. International Journal of Nonlinear Science, 5(1), 11-19. | ||||
Karami, H., Mobayen, S., Lashkari, M., Bayat, F., & Chang, A. (2021). LMI-observer-based stabilizer for chaotic systems in the existence of a nonlinear function and perturbation. Mathematics, 9(10), Article number 1128. Crossref |
||||
Khan, A., & Nasreen, N. (2021). Synchronization of Non-integer Chaotic Systems with Uncertainties, Disturbances and Input Non-linearities. Kyungpook Mathematical Journal, 61(2), 353-369. | ||||
Kocamaz, U. E., Göksu, A., Taşkın, H., & Uyaroğlu, Y. (2015). Synchronization of chaos in nonlinear finance system by means of sliding mode and passive control methods: a comparative study. Information Technology and Control, 44(2), 172-181. Crossref |
||||
Koshy-Chenthittayil, S. (2015). Determination of Chaos in Different Dynamical Systems. Tigerprints.clemson.edu, 5. | ||||
Kumar, S., Matouk, A. E., Chaudhary, H., & Kant, S. (2021). Control and synchronization of fractional‐order chaotic satellite systems using feedback and adaptive control techniques. International Journal of Adaptive Control and Signal Processing, 35(4), 484-497. Crossref |
||||
Lei, Y., Xu, W., Xu, Y., & Fang, T. (2004). Chaos control by harmonic excitation with proper random phase. Chaos, Solitons & Fractals, 21(5), 1175-1181. Crossref |
||||
Li, L., Wang, W., Huang, L., & Wu, J. (2019). Some weak flocking models and its application to target tracking. Journal of Mathematical Analysis and Applications, 480(2), Article number 123404. Crossref |
||||
Li, Y., Tang, W. K., & Chen, G. (2005). Generating hyperchaos via state feedback control. International Journal of Bifurcation and Chaos, 15(10), 3367-3375. Crossref |
||||
Liao, X., & Wang, L. a. Y., P. (2007). Stability of dynamical systems. In: Luo, A. C. J., & Zaslavsky, G. (eds.). Monograph series on nonlinear science and complexity. Elsevier B.V., Netherlands. Crossref |
||||
Lin, H., Wang, C., Yu, F., Xu, C., Hong, Q., Yao, W., & Sun, Y. (2020). An extremely simple multiwing chaotic system: dynamics analysis, encryption application, and hardware implementation. IEEE Transactions on Industrial Electronics, 68(12), 12708-12719. Crossref |
||||
López-Mancilla, D., & Cruz-Hernández, C. (2005). Output synchronization of chaotic systems: model-matching approach with application to secure communication. Nonlinear Dynamics and Systems Theory, 5(2), 141-156. | ||||
Luo, S., & Song, Y. (2016). Chaos analysis-based adaptive backstepping control of the microelectromechanical resonators with constrained output and uncertain time delay. IEEE Transactions on Industrial Electronics, 63(10), 6217-6225. Crossref |
||||
Mkaouar, H., & Boubaker, O. (2012). Chaos synchronization for master slave piecewise linear systems: Application to Chua's circuit. Communications in Nonlinear Science and Numerical Simulation, 17(3), 1292-1302. Crossref |
||||
Mkaouar, H., & Boubaker, O. (2014). Chaos synchronization via Linear Matrix Inequalities: A comparative analysis. International Journal on Smart Sensing and Intelligent Systems, 7(2), 553-583. Crossref |
||||
Mobayen, S., Volos, C. K., Kaçar, S., Çavuşoğlu, Ü., & Vaseghi, B. (2018). A chaotic system with infinite number of equilibria located on an exponential curve and its chaos-based engineering application. International Journal of Bifurcation and Chaos, 28(09), Article number 1850112. Crossref |
||||
Mofid, O., Momeni, M., Mobayen, S., & Fekih, A. (2021). A disturbance-observer-based sliding mode control for the robust synchronization of uncertain delayed chaotic systems: Application to data security. IEEE Access, 9, 16546-16555. Crossref |
||||
Mohadeszadeh, M., & Delavari, H. (2017). Synchronization of fractional-order hyper-chaotic systems based on a new adaptive sliding mode control. International Journal of Dynamics and Control, 5, 124-134. Crossref |
||||
Olusola, O. I., Vincent, U. E., Njah, A. N., & Olowofela, J. A. (2010). Bistability in coupled oscillators exhibiting synchronized dynamics. Communications in Theoretical Physics, 53(5), 815-824. Crossref |
||||
Ott, E., Grebogi, C., & Yorke, J. A. (1990). Controlling chaos. Physical review letters, 64(11), 1196-1199. Crossref |
||||
Pai, M. C. (2019). Synchronization of unified chaotic systems via adaptive nonsingular fast terminal sliding mode control. International Journal of Dynamics and Control, 7(3), 1101-1109. Crossref |
||||
Parekh, N., Kumar, V. R., & Kulkarni, B. D. (1997). Control of spatiotemporal chaos: A study with an autocatalytic reaction-diffusion system. Pramana, 48, 303-323. Crossref |
||||
Pecora, L. M., & Carroll, T. L. (1990). Synchronization in chaotic systems. Physical Review Letters, 64(8), 821-824. Crossref |
||||
Qian, C., & Hu, Y. (2020). Novel stability criteria on nonlinear density-dependent mortality Nicholson's blowflies systems in asymptotically almost periodic environments. Journal of Inequalities and Applications, 2020, Article number 13. Crossref |
||||
Rasappan, S., & Vaidyanathan, S. (2014). Global chaos synchronization of WINDMI and Coullet chaotic systems using adaptive backstepping control design. Kyungpook Mathematical Journal, 54(2), 293-320. Crossref |
||||
Saberi-Nik, H., Effati, S., & Saberi‐Nadjafi, J. A. F. A. R. (2015). Ultimate bound sets of a hyperchaotic system and its application in chaos synchronization. Complexity, 20(4), 30-44. Crossref |
||||
Shao, W., Fu, Y., Cheng, M., Deng, L., & Liu, D. (2021). Chaos synchronization based on hybrid entropy sources and applications to secure communication. IEEE Photonics Technology Letters, 33(18), 1038-1041. Crossref |
||||
Sharma, V., Sharma, B. B., & Nath, R. (2018). Unknown input reduced order observer based synchronization framework for class of nonlinear systems. International Journal of Dynamics and Control, 6, 1111-1125. Crossref |
||||
Shukla, M. K., & Sharma, B. B. (2017). Backstepping based stabilization and synchronization of a class of fractional order chaotic systems. Chaos, Solitons & Fractals, 102, 274-284. Crossref |
||||
Stefanski, A. (2009). Determining thresholds of complete synchronization, and application (Vol. 67). World Scientific. Crossref |
||||
Sun, J., Li, N., & Fang, J. (2018). Combination-combination projective synchronization of multiple chaotic systems using sliding mode control. Advances in mathematical physics, Volume 2018, Article ID 2031942, 10 pages. Crossref |
||||
Van Dooren, R. (2003). Comments on''Chaos and chaos synchronization of a symmetric gyro with linear-plus-cubic damping''. Journal of Sound Vibration, 268(3), 632-634. Crossref |
||||
Vincent, U. E., & Guo, R. (2013). Adaptive synchronization for oscillators in φ6 potentials. Nonlinear Dynamics and Systems Theory, 13(1), 93-106. | ||||
Wang, Q., Yu, S., Li, C., Lü, J., Fang, X., Guyeux, C., & Bahi, J. M. (2016). Theoretical design and FPGA-based implementation of higher-dimensional digital chaotic systems. IEEE Transactions on Circuits and Systems I: Regular Papers, 63(3), 401-412. Crossref |
||||
Wang, S., Wang, C., & Xu, C. (2020). An image encryption algorithm based on a hidden attractor chaos system and the Knuth-Durstenfeld algorithm. Optics and Lasers in Engineering, 128, 105995. Crossref |
||||
Weiss, J. N., Garfinkel, A., Spano, M. L., & Ditto, W. L. (1994). Chaos and chaos control in biology. The Journal of clinical investigation, 93(4), 1355-1360. Crossref |
||||
Wolf, A., Swift, J. B., Swinney, H. L., & Vastano, J. A. (1985). Determining Lyapunov exponents from a time series. Physica D: Nonlinear Phenomena, 16(3), 285-317. Crossref |
||||
Xu, C., Tong, D., Chen, Q., Zhou, W., & Xu, Y. (2020). Exponential synchronization of chaotic systems with stochastic noise via periodically intermittent control. International Journal of Robust and Nonlinear Control, 30(7), 2611-2624. Crossref |
||||
Yamapi, R., & Woafo, P. (2005). Dynamics and synchronization of coupled self-sustained electromechanical devices. Journal of Sound and Vibration, 285(4-5), 1151-1170. Crossref |
||||
Zhao, Z. L., & Guo, B. Z. (2015). On active disturbance rejection control for nonlinear systems using time-varying gain. European Journal of Control, 23, 62-70. Crossref |