APPLIED JOURNAL OF PHYSICAL SCIENCE
Integrity Research Journals

ISSN: 2756-6684
Model: Open Access/Peer Reviewed
DOI: 10.31248/AJPS
Start Year: 2018
Email: ajps@integrityresjournals.org


Regional groundwater studies using high-resolution aeromagnetic data in Abuja and environs, North-Central Nigeria

https://doi.org/10.31248/AJPS2020.030   |   Article Number: 2665D8463   |   Vol.2 (3) - August 2020

Received Date: 07 August 2020   |   Accepted Date: 26 August 2020  |   Published Date: 30 August 2020

Authors:  James Ejike Ebele* and Ahmed Nur

Keywords: Nigeria., groundwater potential zones, First vertical derivative, high resolution aeromagnetic data, lineaments

Abuja and environs usually experiences water shortage during the dry season as a result of rapid population growth, due to the fact that the water from Lower Usuma Dam used for domestic and industrial purposes are no longer sufficient to cater for its teeming population. The shortage can be minimized through better understanding of lineament configurations of the area. Regional groundwater studies using high-resolution aeromagnetic data in Abuja and environs, North-Central Nigeria were carried out to address water shortages in Abuja and its surroundings. The aim of the study was to identify groundwater targets/potential zones for the purpose of providing sufficient water to the communities in the area. The study area is situated in the North-Central part of Nigeria and lies between latitudes 8 00’- 930’ N and longitudes 630’- 800’ E. First vertical derivative (1VD) technique was applied to the residual magnetic data of the study area using Oasis Montaj software version 8.3 and thereafter extracted lineaments from 1VD map using ArcGIS software version 10.4.1. Result of 1VD technique indicates that polyphase deformation was pervasive throughout the area as joints, fractures, faults, as well as folds in the map. Major lineament trends identified in the study area are NNE-SSW 27.47%, NE-SW 25.54%, ENE-WSW 18% and N-S 9.57%, the magnitudes and orientations of the lineaments are essential for groundwater movement. The study indicates that Dogon-Kurmi, Gitata, Rafin, Gurku, Karshi, Keffi, Paiko, Farindoki, Takuti, Lambata, Izom, Tudun Wada, Safon Lapai, Mayaki, Gwagwalada, Gidan Ali, Takura, Dafa, Dangara, Abaji, Kwali, Zuba, Madalla, Gauraka, Suleja, Kuje, Abuja, Bwari, Udegi, Zango-Daji, eastern part of Katakwa, Gadabuke, Buga, Koton-Karfe, Bibirako, Kworaki, Toto, Dagoshi and Umaisha have good groundwater prospect. Fieldwork conducted in the area confirmed the existence of lineaments/fractures in the area and as such are targets for groundwater exploration.

Abdullahi, D. R., Oladosu, O. O., Samson, S. A., Abegunde, L. O., Balogun, T. A., & Mzuyanda, C. (2019). Geospatial analysis ofv groundwaterv potentialv zonesv in vKeffi, Nasarawa State, Nigeria. Journal of Geography, Environment and Earth Science International, 23(1), 1-16.
Crossref
 
Abimbola, A. F. (1997). Petrographic and paragenetic studies of the Agbaja ironstone formation, Nupe Basin, Nigeria. Journal of African Earth Sciences, 25(2), 169-181.
Crossref
 
Adeeko, T. O., & Ajala, E. O. (2015). Geo-electrical investigation of aquifer protective capacity in Kubwa basement complex area, Abuja, Nigeria. Journal of Global Ecology and Environment, 3(4), 230-241.
 
Adeeko, T. O., Hassan, M., & Bello, M. A. (2017). Geo-electrical study of groundwater potential in Kwali area of Abuja, Nigeria. The African Review of Physics, 12, 71-78.
 
Adeleye, D. R. (1989). The geology of the Middle Niger Basins. In: C.A Kogbe (ed.) Geology of Nigeria, 2nd revised ed. Ibadan: Abi Print and Park Printers, Pp. 335-339.
 
Adewumi, T., & Salako, K. A. (2018). Delineation of mineral potential zone using high resolution aeromagnetic data over part of Nasarawa State, North central, Nigeria. Egyptian Journal of Petroleum, 27, 759-767.
Crossref
 
Akpan, M. L., Abu, M., & Nasir, A. N. (2018). Vulnerability assessment of groundwater to contamination using electrical resistivity method at the open dumpsite in Gosa, Abuja, Nigeria. Journal of Geology and Geophysics, 7(2), 1-9.
 
Andrew, J., Alkali, A., Salako, K. A. & Udensi, E. E. (2018). Delineating mineralisation zones within the Keffi-Abuja area using aeromagnetic data. Journal of Geography, Environment and Earth Science International, 15(3), 1-12.
Crossref
 
Anudu, G. K., Stephenson, R. A., Ofoegbu, C. O., & Obrike, S. E. (2020). Basement morphology of the middle Benue Trough, Nigeria, revealed from analysis of high-resolution aeromagnetic data using grid-based operator methods. Journal of African Earth Sciences, 162, 103724.
Crossref
 
Ayuba, R. A., & Nur, A. (2018). Analysis of high resolution aeromagnetic data and satellite imagery for mineral potential over parts of Nasarawa and Environs, North-central Nigeria. International Journal of Scientific and Technology Research, 7(6), 103-110.
 
Bala. B., Lawal, K. M., Ahmed, A. L., Umar, M., Mohammed, A. A., & Adamu, A. (2017). The use of analytic and first vertical derivative techniques to gain insight into aeromagnetic anomaly patterns in part of Ikara, Nigeria. FUW Trends in Science and Technology Journal, 2(2), 684-690.
 
Braide, S. P. (1992). Geologic development, origin and energy mineral resources potential of the Lokoja Formation in the Southern Bida Basin. Journal of Mining and Geology, 28, 33-44.
 
Braide, S. P. (1992b). Syntectonic fluvial sedimentation in the central Bida Basin. Journal of Mining Geology, 28, 55-64.
 
Casas, A. M., Cortés, A. L., Maestro, A., Soriano, M. A., Riaguas, A., & Bernal, J. (2000). LINDENS: A program for lineament length and density analysis, Computers and Geosciences, 26, 1011-1022.
Crossref
 
Chup, C. D., & Iyanya, C. A. (2017). Comparative analysis of heavy metal status in different groundwater sources in Kuje town, Abuja, Nigeria. Confluence Journal of Environmental Studies, 11(2), 13-18.
 
Dan-Hassan, M. A., Olasehinde, P. I., Amadi, A. N., Unuevho, C. I., & Okoye, N. O. (2016). Evaluation of groundwater chemistry in parts of Abuja, Nigeria using factor analysis and water quality index. Proceedings of the International Conference on Education, Development and Innovation, 29 - 31 August 2016, Ghana. Pp. 815-827.
 
Dobrin, M. B., & Savit, C. H. (1988). Introduction to geophysical prospecting (4th edition). McGraw Hill, New York.
 
Edet, A. E., Okereke, C. S., Teme, S. C., & Esu, E.O. (1998). Application of remote-sensing data to groundwater exploration: A case study of the Cross-River State, south-eastern Nigeria. Hydrogeology Journal, 6, 394-404.
Crossref
 
Fairhead, J. D., & Green, C. M. (1989). Controls of rifting in Africa and the regional tectonic model for the Nigeria and East Niger rifts basins. Journal of African Earth Sciences, 8(2/3/4), 231-249.
Crossref
 
Fairhead, J. D., & Okereke, C. S. (1990). Crustal thinning and extension beneath the benue Trough based on gravity studies. Journal of African Earth Sciences (and the Middle East), 11(3-4), 329-335.
Crossref
 
Fernandes, A. J., & Rudolph, D. L. (2001). The influence of Cenozoic tectonics on the groundwater production capacity of fractured zones: a case study in Sao Paulo, Brazil. Hydrogeology Journal, 9, 151-167.
Crossref
 
Ferrill, D. A., Winterle, J., Wittmeyer, G., Sims, D., Colton, S., & Armstrong. A. (1999). Stressed rock strains groundwater at Yucca Mountain, Neveda. GSA Today, 9, 1-8.
 
Grauch, V. J. S., & Drenth, B. J. (2009). High-resolution aeromagnetic survey to image shallow faults, Poncha Springs and vicinity, Chaffee County, Colorado: U.S. Geological Survey Open-File Report 2009-1156, 31p.
Crossref
 
Greenbaum, D. (1985). Review of remote sensing applications to groundwater exploration in basement and regolith. British Geological Survey report OD 85(8), 36p.
 
Gudmundsson, A. (2011). Rock fractures in geological processes (1st edition). Cambridge University Press, Cambridge, p.466.
 
Hung, L. Q., Batelaan, O., & San, D. N. (2003). Lineament analysis in fractured rocks, methodology and application to the Suoimuoi karst catchment. In: Krasny, J., Hrkal, Z., & Bruthans, J. (eds.). Proceedings of the International Conference on Groundwater in Fractured Rocks, 15-19 September 2003, Prague.
 
Idris-Nda, A., Abubakar, S. I., & waziri, S. H. (2015). Groundwater development in a mixed geological terrain: a case study of Niger State, central Nigeria. WIT Transactions on Ecology and the Environment, 196, 77-87.
Crossref
 
Ismaila, R. A. (2018). Strategies for coping with inadequate domestic water supply in Abuja, Nigeria. Water International, 43(5), 570-590.
Crossref
 
Kasidi, S. (2017). Groundwater exploration using electrical resistivity method a case study in federal capital territory (FCT) Abuja, Nigeria. International Journal of Engineering and Applied Sciences, 4(10), 1-8.
 
Kim, G. B., Lee, J. Y. & Lee, K. K. (2004). Construction of lineament maps related to groundwater occurrence with ArcView and AvenueTM scripts. Computers and Geosciences, 30, 1117-1126.
Crossref
 
Kumar, R., & Reddy, T. (1991). Digital analysis of lineaments- A test study on South India, Computers and Geosciences, 17(4), 549-559.
Crossref
 
Ladipo, K. O., Ojo, O. J., & Akande, S. O. (2011). Field trip guide to the upper cretaceous sequences of the Southern Bida Basin: An overview of the petroleum system. Publication of the Nigerian Association of Petroleum Explorationists. p. 22.
 
Lattman, L. H., & Parizek, R. R. (1964). Relationship between fracture traces and the occurrence of ground water in carbonate rocks. Journal of Hydrology, 2, 73-91.
Crossref
 
Lyatsky, H., Pana, D., Olson, R. & Godwin, L. (2004). Detection of subtle basement faults with gravity and magnetic data in Alberta Basin, Canada: A data-use tutorial. The Leading Edge, 23(12), 1282-1288.
Crossref
 
Mabee, S. B., Hardcastle, K. C. & Wise, D. U. (1994). A method of collecting and analyzing lineaments for regional-scale fractured-bedrock aquifer studies. Ground Water, 32(6), 884-894.
Crossref
 
Magowe, M., & Carr J. R. (1999). Relationship between lineaments and ground water occurrence in western Botswana. Ground Water, 37(2), 282-286.
Crossref
 
Mayer, J. R. & Sharp, J. M. (1998). Fracture control of regional-water flow in a carbonate aquifer in a semi-arid region. Geological Society of America Bulletin 110, Pp. 269-283.
Crossref
 
McCurry, P. (1971). Pan-African Orogeny in Northern Nigeria. Geological Society of America Bulletin 82, 3251-3262.
Crossref
 
McCurry, P. (1976). The geology of the precambrian to lower paleozoic rocks of Northern Nigeria. A review, in Geology of Nigeria, Edited by C.A. Kogbe. Published by Elizabethan Co. Lagos. Pp. 15-39.
 
Miles, W. F. & Oneschuk, D. (2016). First vertical derivative of magnetic anomalies map, Canada. Geological Survey of Canada Open File 7878, 2016, 1 sheet.
Crossref
 
Miles, W. F., Roest, W. R., & Vo, M. P. (2000). First vertical derivative of magnetic anomalies map. Canada: Geological Survey of Canada, Open File 3829b, 1.
Crossref
 
Mostafa, M. E., & Zakir, F. A. (1996). New enhancement techniques for azimuthal analysis of lineaments for detecting tectonic trends in and around the Afro-Arabian Shield. International journal of remote sensing, 17(15), 2923-2943.
Crossref
 
Nabighian, M. N. (1972). The analytic signal of two-dimensional magnetic bodies with polygonal cross-section: its properties and use for automated anomaly interpretation. Geophysics, 37(3), 507-517.
Crossref
 
Nalbant, S., & Alptekin, Ö. (1995). The use of Landsat Mapper imagery for analysing lithology and structure of Korucu-Dugla area in western Turkey. International Journal of Remote Sensing, 16(13), 2357-2374.
Crossref
 
National Research Council (1996). Rock fractures and fluid flow. National Academy Press, Washington, D.C. p. 11.
 
National Space Research and Development Agency (NASRDA) (2014). Topographic map of the study area.
 
Nigerian Geological Survey Agency (NGSA) (2011). Geological and Mineral Resources Map of Nigeria.
 
Obaje, N. G. (2009). Geology and mineral resources of Nigeria. Springer Berlin.
Crossref
 
Obiadi, B. N., Ezezue, A. M., & Uduak, P. U. (2019). The emergence of Abuja, and the negative impact on the urban: a failed metropolitan link. International Journal of Scientific and Engineering Research, 10(8), 178-193.
 
Ohiambe, E., Home, P. G., Coker, A. O., & Sang, J. (2019). Assessing the surface rainwater harvesting potential for Abuja, Nigeria: A short-term projection. Nigerian Journal of Technological Development, 16(2), 63-70.
Crossref
 
Omotoso, O., & Akanbi, O. A. (2018). Water vendor and domestic water needs in peri-urban: A case of Gwagwalada town, Gwagwalada area council federal capital territory (FCT), Nigeria. Journal of Ecology and natural Resources, 2(6), 1-8.
Crossref
 
Onyeagocha, A. C. (1984). Petrology and geological history of N.W. Akwanga in Northern Nigeria. Journal of African Earth Sciences, 2(2), 441-450.
Crossref
 
Onyeagocha, A. C., & Ekwueme, B. N. (1982). The Pre-Pan-African structural features of North central Nigeria. Journal of Mining Geology, 19(2), 74-77.
 
Paananen, M. (2013). Completed Lineament Interpretation of the Olkiluoto Region. Posiva, 2013-02 ISBN 978-951-652-234-3.
 
Toteu, S. F., Garoua, J. M., Bertrand, J. M., & Dautel, D. (1990). Metamorphic zircons from North Cameroon; implications for the Pan-African evolution of Central Africa. Geologische Rundschau, 79(3), 777-788.
Crossref
 
Verduzco, B., Fairhead, J. D., Green, C. M., & Mackenze, C. (2004) New insights into magnetic derivatives for structural mapping. The Leading Edge, 23(2), 116-119.
Crossref
 
Zakir, F. A., Qari, M. H. T., & Mostfa, M. E. (1999). A new optimising technique for preparing lineament density maps. International Journal of Remote Sensing, 20, 1073-1085.
Crossref