ISSN: 2756-6684
Model: Open Access/Peer Reviewed
DOI: 10.31248/AJPS
Start Year: 2018
Email: ajps@integrityresjournals.org
https://doi.org/10.31248/AJPS2022.073 | Article Number: 0E0548092 | Vol.4 (2) - June 2022
Received Date: 10 June 2022 | Accepted Date: 28 June 2022 | Published Date: 30 June 2022
Authors: Idama, O.* and Azodo, A. P.
Keywords: mechanical properties, Africa beauty, artificial intelligence, eggplant, harvesting robot, physical characteristics
The construction and application of eggplant harvesting robot required some basic physical characteristics and mechanical properties of the eggplant fruit. The physical characteristics (geometric mean diameter, surface area, volume, sphericity, and weight), and mechanical properties (failure energy, failure force, deformation, shear resistance, and shear force) of the Africa beauty eggplant fruits, were evaluated at three different maturity stages in this study. The maturity stages adopted in this study were 21 days after peak anthesis (DAPA), 28 DAPA, and 35 DAPA. The results obtained showed that the maturity stage resulted in a significant effect (p<0.05) on the mechanical properties of the eggplant fruits. The geometric mean diameter, surface area, volume, sphericity, and weight of the fruits significantly increased as the fruits matured from 21 DAPA to 35 DAPA (p<0.05). The failure energy, failure force, shear resistance, and shear force of the fruits were fluctuating during maturity; fruits harvested at 21 DAPA recorded the lowest values, while those harvested at 28 DAPA recorded the highest values. In addition, the study revealed that the loading position had a significant effect on the mechanical properties of the fruits (p<0.05). The best eggplant harvesting robot properties obtained in this study was at 28 days after peak anthesis (DAPA). The physical characteristics and mechanical properties results of eggplant fruit, obtained in this study will be useful information for the application in the design and construction of eggplant fruits robot harvesting.
Akpokodje, O. I., & Uguru, H. (2019). Calcium treatment and harvesting stage influence on textural quality of eggplant (cv. Africa black beauty) fruits. Journal of Engineering and Information Technology, 6(3), 18-23. | ||||
Arazuri, S., Jarén, C., Arana, J. I., & De Ciriza, J. P. (2007). Influence of mechanical harvest on the physical properties of processing tomato (Lycopersicon esculentum Mill.). Journal of Food Engineering, 80(1), 190-198. Crossref |
||||
Arima, S., Kondo, N., Yagi, Y., Monta, M., & Yoshida, Y. (2001). Harvesting robot for strawberry grown on table top culture, 1: Harvesting robot using 5 DOF manipulator. Journal of Society of High Technology in Agriculture, 13(3), 159-166. Crossref |
||||
ASABE Standard S368.4 (2008) Compression test of food materials of convex shape. In ASAE Standards; American Society of Agricultural and Biological Engineers: Chicago, IL. | ||||
Ashtiani, S. M., Golzarian, M. R., Motie, J. B., Emadi, B., Jamal, N. N., & Mohammadinezhad, H. (2016). Effect of loading position and storage duration on the textural properties of eggplant. International Journal of Food Properties, 19(4), 814-825. Crossref |
||||
Burubai, W., Akor, A. J., Igoni, A. H., & Puyate, Y. T. (2007). Some physical properties of African nutmeg (Monodora myristica). International Agrophysics, 21(2), 123-126. | ||||
Ekruyota, O. G., & Uguru, H. (2021). Characterizing the mechanical properties of eggplant (Melina F1) fruits, for the design and production of agricultural robots. Direct Research Journal of Engineering and Information Technology, 8, 21-29. Crossref |
||||
Food and Agriculture Organization of the United Nations (FAO) (2014). FAOSTAT Production Databases. Retrieved from http://www. faostat.fao.org | ||||
Gladyszewska, B., & Ciupak, A. (2009). Changes in the mechanical properties of the greenhouse tomato fruit skins during storage. Technical Sciences, 12(12), 1-8. Crossref |
||||
Grubben, G. J. H., & Denton, O. A. (2004). Plant resources of tropical Africa 2. Vegetables. Leider Wagernngen, Backhuys publishers. | ||||
Harish, B. N., Babu, P. A., Mahesh, T., & Venkatesh, Y. P. (2008). A cross-sectional study on the prevalence of food allergy to eggplant. Clinical & Experimental Allergy, 38(11), 1795-1802. | ||||
Hayashi, S., Ganno, K., Ishii, Y., & Tanaka, I. (2002). Robotic harvesting system for eggplants. Japan Agricultural Research Quarterly, 36(3), 163-168. Crossref |
||||
Ibeawuchi, I. I., Okoli, N. A., Alagba, R. A., Ofor, M. O., Emma-Okafor, L. C., Peter-Onoh, C. A., & Obiefuna, J. C. (2015). Fruit and vegetable crop production in Nigeria: The gains, challenges and the way forward. Journal of Biology, Agriculture and Healthcare, 5(2), 194-208. | ||||
Kashyap, V., Kumar, S. V., Collonnier, C., Fusari, F., Haicour, R., Rotino, G. L., Sihachakr, D., & Rajam, M. V. (2003). Biotechnology of eggplant. Scientia Horticulturae, 97(1), 1-25. Crossref |
||||
Li, Z., Li, P., & Liu, J. (2011). Physical and mechanical properties of tomato fruits as related to robot's harvesting. Journal of Food Engineering, 103(2), 170-178. Crossref |
||||
Li, Z., Yang, H., Li, P., Liu, J., Wang, J., & Xu, Y. (2013). Fruit biomechanics based on anatomy: a review. International Agrophysics, 27(1), 97-106. Crossref |
||||
Mohsenin, N. N. (1986). Physical properties of plant and animal materials. Gordon Breach Science Press, New York, USA. | ||||
National Research Council (2006). Lost Crops of Africa: Volume II: Vegetables. National Academies Press. | ||||
Noda, Y., Kneyuki, T., Igarashi, K., Mori, A., & Packer, L. (2000). Antioxidant activity of nasunin, an anthocyanin in eggplant peels. Toxicology, 148(2-3), 119-123. Crossref |
||||
Nwaiwu, I. U., Eze, C. C., Onyeagocha, S. U. O., Ibekwe, U. C., Korie, O. C., Ben-Chendo, N. G., Henri-Ukoha, A., Osuji, M.N., Kadiri, F. A., & Ukoha, I. I. (2012). Determinants of net returns from garden egg (solanummelongena) production in IMO State, Southeast Nigeria. International Journal of Agriculture and Rural Development, 15(3), 1258-1263. | ||||
Nwanze, N. E., & Uguru, H. (2020). Optimizing the efficiency of eggplant fruits harvesting and handling machines. Journal of Materials Science Research and Reviews, 6(3), 1-10. | ||||
Omotesho, O. A., Muhammad-Lawal, A.,Amolegbe, K. B., & Abubakar, T. A. (2017). Assessment of dry season garden egg production among small-scale farmers in Edu Local Government Area of Kwara State, Nigeria. Journal of Agricultural Sciences (Belgrade), 62(1), 89-103. Crossref |
||||
Onishi, Y., Yoshida, T., Kurita, H., Fukao, T., Arihara, H., & Iwai, A. (2019). An automated fruit harvesting robot by using deep learning. Robomech Journal, 6(13), 1-8. Crossref |
||||
Ozobia, A. P., Omaliko, E. P., Amusa, A. R., & Idacheba, N. (2013). Assessment of garden egg production in Giri town, Gwagwalada Area Council, Federal Capital Territory, Abuja, Nigeria. Scholarly Journal of Agricultural Science, 3(4), 142-148. | ||||
Rakun, J., Stajnko, D., & Zazula, D. (2011). Detecting fruits in natural scenes by using spatial-frequency based texture analysis and multiview geometry. Computers and Electronics in Agriculture, 76(1), 80-88. Crossref |
||||
Ranil, R. H. G., Prohens, J., Aubriot, X., Niran, H. M. L., Plazas, M., Fonseka, R. M., Vilanova, S., Fonseka, H. H., Gramazio, P., & Knapp, S. (2017). Solanuminsanum L. (subgenus Leptostemonum Bitter, Solanaceae), the neglected wild progenitor of eggplant (S. melongena L.): A review of taxonomy, characteristics and uses aimed at its enhancement for improved eggplant breeding. Genetic Resources and Crop Evolution, 64(7), 1707-1722. Crossref |
||||
Sirisomboon, P., Tanaka, M., & Kojima, T. (2012). Evaluation of tomato textural mechanical properties. Journal of Food Engineering, 111(4), 618-624. Crossref |
||||
Steffe, J. F. (1996). Rheological methods in food process engineering (Second Edition). Freeman Press, USA. | ||||
Uguru, H., & Akpenyi-Aboh, O. N. (2021). Optimization of agricultural machines through the preharvest treatment of sweet paper (cv. Goliath) fruits. Direct Research Journal of Agriculture and Food Science, 9, 167-173. Crossref |
||||
Uguru, H., & Nyorere, O. (2019). Failure behaviour of groundnut (SAMNUT 11) kernel as affected by kernel size, loading rate and loading position. International Journal of Scientific & Engineering Research, 10(2), 1209-1217. | ||||
Umurhurhu B., & Uguru, H. (2019). Effect of storage duration on mechanical properties of Bello eggplant fruit under quasi compression loading. International Journal of Research - Granthaalayah, 7(5), 311-320. Crossref |
||||
United States Department of Agriculture (USDA) (2009). Eggplant nutrient values and weights for edible portion. Variability and Change on Food production in Nigeria. 2nd Annual Conference and Gold. Pp. 114-130. | ||||
Uthumporn, U., Fazilah, A., Tajul, A. Y., Maizura, M., & Ruri, A. S. (2016). Physico-chemical and antioxidant properties of eggplant flour as a functional ingredient. Advance Journal of Food Science and Technology, 12(5), 235-243. Crossref |