ADVANCED JOURNAL OF PLANT BIOLOGY
Integrity Research Journals

ISSN: 2992-4928
Model: Open Access/Peer Reviewed
DOI: 10.31248/AJPB
Start Year: 2019
Email: ajpb@integrityresjournals.org


Flower abortion of pepino melon (Solanum muricatum Ait.) as influenced by NPK fertilizer rates and growing environment

https://doi.org/10.31248/AJPB2022.023   |   Article Number: E4D5F9B02   |   Vol.4 (2) - April 2023

Received Date: 28 May 2022   |   Accepted Date: 27 June 2022  |   Published Date: 30 April 2023

Authors:  Carol M. Mutua* , Robert M. Gesimba and Joshua O. Ogweno

Keywords: pollen viability, pollen germination, flowers, Aborted, non-aborted

Flower abortion is the detachment of flowers from the plant. A study was conducted at Egerton University, Kenya in 2018 to 2020 to investigate the effect of NPK fertilizer rates (0, 100, 200. 300 and 400 kg ha-1) on flower abortion of field and greenhouse grown pepino melons. The experiment was laid out in a randomized complete block design with three replications. Data was collected on number of flowers, number of aborted flowers, viable and non-viable pollen and in vitro pollen germination. Data were analysed using analysis of variance with the SAS statistical package. Significant means were separated using Tukey’s Honestly Significant Difference at p≤0.05. Results indicated that field grown plants supplied with 200 and 300 kg NPK ha-1 had 10.28 and 11.18 flowers per truss respectively in trial one. In trial two, field grown plants supplied with 300 kg NPK ha-1 had 11.32 flowers per truss. Greenhouse grown plants supplied with 300 kg NPK ha-1 had 20.61 and 14.19 aborted flowers in trial one and two respectively. High pollen viability was recorded from non-aborted flowers obtained from field grown plants supplied with 300 kg NPK ha-1 with a pollen viability of 94.48% and 93.97% in trial one and two respectively. Pollen from non-aborted flowers obtained from field grown plants supplied with 300 kg NPK ha-1 had the highest pollen germination of 68.72 and 67.72% in trial one and two respectively. Application of 200 and 300 kg NPK ha-1 for field and greenhouse grown pepino melon plants led to reduced flower abortion, high number of flowers per truss, high pollen viability and pollen germination.

Abdul-Baki, A. A. (1992). Plant ecophysiology. John Willey and Sons Inc., pp 101-126.
 
Adams, S. R., Cockshull, K. E., & Cave, C. R. J. (2001). Effect of temperature on the growth and development of tomato fruits. Annals of Botany, 88, 869-877.
Crossref
 
Aloni, B., Karni, L., Zaidman, Z., & Schaffer, A. A. (1997). The relationship between sucrose supply, sucrose-cleaving enzymes and flower abortion in pepper. Annals of Botany, 79, 601-605.
Crossref
 
Aloni, B., Pashkar, T., & Karni, L. (1991). Partitioning of [14C] sucrose and acid invertase activity in reproductive organs of pepper plants in relation to their abscission under heat stress. Annals of Botany, 67, 371-377.
Crossref
 
Apel, K., & Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress and signal transduction. Annual Review of Plant Biology, 55, 373-399.
Crossref
 
Ascough, G. D., Nogemane, N., Mtshali, N. P., & Staden, J. V. (2005). Flower abscission: environmental control, internal regulation and physiological responses of plants. South African Journal of Botany, 71(3&4), 287-301.
Crossref
 
Atherton, J. C., & Rudish, J. (1986). The tomato crop. Chapman and Hal. Pp 67-215.
Crossref
 
Boote, K. J., Aleen, L. H., Prasad, P. V. V., Baker, J. T., Gesch, R. W., Snyder, A. M., Pan, D., & Thomas, J. M. G. (2005). Elevated temperature and carbon dioxide impacts on pollination, reproductive growth, and yield of several globally important Crops. Journal of Agricultural Metereology Japan, 60, 469-474.
Crossref
 
Brewbacker, J. L., & Kwack, B. H. (1963). The essential role of calcium ion in pollen germination and pollen tube growth. American Journal of Botany, 50, 859-865.
Crossref
 
Burge, G. K. (1989). Fruit set in the pepino (Solanum muricatum Ait.). Scientia Horticulturae, 41, 63-68.
Crossref
 
Cavusoglu, A., Erkel, I. E., & Sulusoglu, M. (2009). The effects of climatic factors at different growth periods on pepino (Solanum muricatum Aiton): A model for the enhancement of underutilized exotic fruits. Food Research International, 44, 1927-1935.
 
Cong, Z., Lu, H., & Ni, G. (2014). A simplified dynamic method for field capacity estimation and its parameter analysis. Water Science and Engineering, 7(4), 351-362.
 
Croser, J. S., Clarke, H. J., Siddque, K. H. M., & Khan, T. N. (2003). Low temperature stress: implications for chickpea (Cicer arietinum L.) improvement. Critical Reviews in Plant Science, 22, 185-219.
Crossref
 
Dominguez, E., Cuartero, J., & Fernandez-Munoz, R. (2005). Breeding tomato for pollen tolerance to low temperatures by gametophytic selection. Euphytica, 142, 253-263.
Crossref
 
Erickson, A. N., & Markhart, A. H. (2001). Flower production, fruit set, and physiology of bell pepper during elevated temperature and vapor pressure deficit. Journal of the American Society for Horticultural Science, 126, 697-702.
Crossref
 
Erickson, A. N., & Markhart, A. H. (2002). Flower development stage and organ sensitivity of bell pepper (Capsicum annuum L.) to elevated temperature. Plant, Cell and Environment, 25, 123-130.
Crossref
 
FAO (1994). Neglected Crops: 1492 from a different perspective. FAO plant production and protection series, No. 26 ISBN 92-5-103217-3.
 
Ganova, D., Grozeva, S., & Pericharova, G. (2019). Effect of reduced irrigation on flowering, fruit set and yield of indeterminate tomatoes. International Journal of Research Technology and Engineering 8, 2, 932-936.
Crossref
 
Gruda, N. (2005). Impact of environmental factors on product quality of greenhouse vegetables for fresh consumption. Critical Reviews in Plant Sciences, 24, 227-247.
Crossref
 
Guinn, G. (1974). Abscission of cotton floral buds as influenced by factors affecting photosynthesis and respiration. Crop Science, 14, 291-293.
Crossref
 
Heuvelink, E., Marcelis, L. F. M., & Korner, O. (2004). How to reduce yield fluctuation in sweet pepper? Acta Horticulturae, 633, 349-355.
Crossref
 
Hoekstra, F. A., Crowe, L. M., & Crowe, J. H. (1989). Differential dessication sensitivity of corn and pennisetum pollen linked to their sucrose contents. Plant Cell and Environment, 12, 83-91.
Crossref
 
Huan, F., Lizhe, A., Ling, L. T., Zong, D. H., & Unling, W. X. (2000). Effect of enhanced Ultraviolet-B radiation on pollen germination ad tube growth of 19 Taxa in vitro. Environment and Experimental Botany, 43, 45-53.
Crossref
 
Huberman, M., Riov, J., Aloni, B., & Goren, R. (1997). Role of ethylene biosynthesis and auxin content and transport in high temperature induced abscission of pepper reproductive organs. Journal of Plant Growth Regulation, 16, 129-135.
Crossref
 
Iyagba, A. G., Onuegbu, B. A., & Ibe, A. E. (2013). Growth and yield response of okra (Abelmoschus esculentus (L.) Moench) to NPK fertilizer rates and weed interference in South-eastern Nigeria. International Research Journal of Agricultural Science and Soil Science, 3(9), 328-335.
 
Jaetzold, R., & Schmidt, H. (2006). Farm management handbook of Kenya. Natural conditions and farm management information, Ministry of Agriculture Kenya.
 
Jang, J. C., & Sheen, J. (1997). Sugar sensing in higher plants. Trends Plant Science, 2, 208-213.
Crossref
 
Kafizadeh, N., Carapetian, J., & Kalantari, K. M. (2008). Effects of heat stress on pollen viability and pollen tube growth in pepper. Research Journal of Biological Sciences, 3(10), 1159-1162.
 
Kakani, V. G., Reddy, R. K., Koti, S., Wallace, T. P., Prasad, P. V. V., Reddy, V. R., & Zhao, D. (2005). Differences in in vitro pollen germination and pollen tube growth of cotton cultivars in response to high temperature. Annals of Botany, 96, 607-612.
Crossref
 
Khetran, R., Kasi, M. A., Agha, S. A. H., Fahmid, S., & Ali, J. (2016). Effect of different doses of NPK fertilizers on growth of okra (Abelmoschus esculentus (L.) Moench). International Journal of Advanced Research in Biological Sciences, 3(10), 213-218.
Crossref
 
Kotak, S., Larkindale, J., Lee, U., Von, K. P., Vierling, E., & Scharf, K. D. (2007). Complexity of the heat stress response in plants. Current Opinion in Plant Biology, 10, 310-316.
Crossref
 
Lau, T. C., & Stephenson, A. G. (1993). Effects of soil nitrogen on pollen production, pollen grain size and pollen performance in Cucurbita pepo (Cucurbitaceae). American Journal of Botany, 80(7), 763-768.
Crossref
 
Levy, A., Rabonowitch, H. D., & Kedar, N. (1978). Morphological and physiological characters affecting flower drop and fruit set of tomatoes at high temperatures. Euphytica, 27, 211-217.
Crossref
 
Lim, T. K. (2015). Fruits. In T. K. Lim (Ed.), Edible Medicinal and Non-medicinal plants. Springer. Pp. 390-394.
 
Makinde, A. I., Jokanola, O. O., Adedeji, J. A., Awogbade, A. L., & Adenkule, A. F. (2016). Impact of organic and inorganic fertilizers on the yield, lycopene and some minerals in tomato (Lycopersicon esculentum Mill) fruit. European Journal of Agriculture and Forestry Research, 4(1), 18-26.
 
Marcelis, L. F. M., Heuvelink, E., Baan Hofman-Eijer, L. R., Den, B. J., & Xue, L. B. (2004). Flower and fruit abortion in sweet pepper in relation to source and sink strength. Journal of Experimental Botany, 55, 2261-2268.
Crossref
 
Mends-Cole, M. T., Banful, B. K., and Tandoh, P. K. (2019). Flower abortion and fruit yield responses of two varieties of chilli pepper (Capsicum frutescens L.) to different planting dates and plant densities. Archives of Current Research International, 16(1), 1-11.
Crossref
 
Nyoka, B. I., Sileshi, G. W., & Silim, S. N. (2015). Flower and pod abortion and its implication to seed production in Gliricidia sepium (Jacq.) Walp. International Journal of Agroforestry and Silviculture, 2(6), 144-148.
 
Okalebo, J. R., Gathua, K. W., & Woomer, P. L. (2002). Laboratory methods of soil and water analysis: A working manual. Second edition. 128p.
 
Prasad, P. V. V., Boote, K. J., Allen, L. H., & Thomas, J. M. G. (2002). Effects of elevated temperature and carbon dioxide on seed-set and yield of kidney bean (Phaseolus vulgaris L.). Global Change Biology, 8(8), 710-721.
Crossref
 
Prasad, P. V. V., Boote, K. J., Allen, L. H., & Thomas, J. M. G. (2003). Super optimal temperatures are detrimental to peanut (Arachis hypogaea L.) reproductive processes and yield at both ambient and elevated carbon dioxide. Global Change Biology, 9, 1775-1787.
Crossref
 
Prasad, P. V. V., Craufurd, P. Q., & Summerfield, R. J. (1999). Fruit number in relation to pollen production and viability in groundnut exposed to short episodes of heat stress. Annals of Botany, 84, 381-386.
Crossref
 
Pressman, E., Peet, M. M., & Pharr, D. M. (2002). The effect of heat stress on tomato pollen characteristics is associated with changes in carbohydrate concentration in the developing anthers. Annals of Botany, 90, 631-636.
Crossref
 
Prohens, J., Ruiz, J. J. and Nuez, F. (2000). Growing cycles for a new crop, the pepino, in the Spanish Mediterranean. Acta Horticulturae, 523, 53-60.
Crossref
 
Rathod, V., Behera, T. K., Munshi, A. D., Durgesh, K., Jat, G. S., Boopala, K. G., & Sharma, N. (2018). Pollen viability and in vitro pollen germination studies in Momordica species and their intra and interspecific hybrids. International Journal of Chemical Studies, 6(6), 32-40.
 
Razzaq, M. K., Rauf, S., Khurshid, M., Iqbal, S., Bhat, J. A., Farzand, A., Riaz, A., Xing, G., & Gai, J. (2019). Pollen viability an index of abiotic stresses tolerance and methods for improved pollen viability. Pakistan Journal of Agricultural Research, 32(4), 609-624.
Crossref
 
Reddy, K. R., & Kakani, V. G. (2007). Screening Capsicum species of different origins for high temperature tolerance by in vitro pollen germination and pollen tube length. Scientia Horticulturae, 112, 130-135.
Crossref
 
Saito, T., & Ito, H. (1973). Studies on flowering and fruiting in eggplants. VIII. Effects of early environmental conditions and cultural treatment on flower development and drop. Journal of the Japanese Society for Horticultural Science, 42, 155-162.
Crossref
 
SAS Institute. (2005). Step by Step Basic Statistics Using SAS; Student Guide; Version 9.1 Cary, SAS Institute Inc., North Carolina, USA. 40p.
 
Sato, S., Peet, M. M., & Thomas, J. F. (2000). Physiological factors limit fruit set of tomato (Lycopersicon esculentum Mill.) under chronic mild heat stress. Plant Cell Environment, 23, 719-26.
Crossref
 
Stephenson, A. G. (1981). Flower and fruit abortion: proximate causes and ultimate functions. Annual Reviews of Ecological Systems, 12, 253-279.
Crossref
 
Taylor, J. E., & Whitelaw, A. C. (2001). Signals in abscission. New Phytologist, 151, 323-339.
Crossref
 
Thunar, M. (2010). The effects of temperature stress on the quality and yield of soya bean [Glycine max L. (Merrill)]. Journal of Agricultural Science, 2(1), 172-178.
Crossref
 
Van, D. W. G., & Stead, A. D. (1997). Abortion of flowers and floral parts. Journal of Experimental Botany, 48, 821-837.
Crossref
 
Warner, R. M., & Erwin, J. E. (2005). Naturally occurring variation in high temperature induced floral bud abortion across Arabidopsis thaliana accessions. Plant, Cell and Environment, 28, 1255-1266.
Crossref
 
Wien, H. C., Aloni, B., Riov, J., Goren, R., Huberman, M., & Ho, C. J. (1993). Physiology of heat stress-induced abscission in pepper. In: Kuo, C. G., (ed.). Adaptation of Food Crops to Temperature and Water Stress (Pp. 188-198). Proceedings of an International Symposium, Taiwan.
 
Wubs, A. M., Heuvelink, E., & Marcelis, L. F. M. (2009). Abortion of reproductive organs in sweet pepper (Capsicum annuum L.): A review. Journal of Horticultural Science and Biotechnology, 85(5), 467-475.
Crossref
 
Zinn, K. E., Tunc-Ozdemir, M., & Harper J. F. (2010). Temperature stress and plant sexual reproduction: Uncovering the weakest links. Journal of Experimental Botany, 61(7), 1959-1968.
Crossref