ISSN: 2992-4928
Model: Open Access/Peer Reviewed
DOI: 10.31248/AJPB
Start Year: 2019
Email: ajpb@integrityresjournals.org
https://doi.org/10.31248/AJPB2022.023 | Article Number: E4D5F9B02 | Vol.4 (2) - April 2023
Received Date: 28 May 2022 | Accepted Date: 27 June 2022 | Published Date: 30 April 2023
Authors: Carol M. Mutua* , Robert M. Gesimba and Joshua O. Ogweno
Keywords: pollen viability, pollen germination, flowers, Aborted, non-aborted
Flower abortion is the detachment of flowers from the plant. A study was conducted at Egerton University, Kenya in 2018 to 2020 to investigate the effect of NPK fertilizer rates (0, 100, 200. 300 and 400 kg ha-1) on flower abortion of field and greenhouse grown pepino melons. The experiment was laid out in a randomized complete block design with three replications. Data was collected on number of flowers, number of aborted flowers, viable and non-viable pollen and in vitro pollen germination. Data were analysed using analysis of variance with the SAS statistical package. Significant means were separated using Tukey’s Honestly Significant Difference at p≤0.05. Results indicated that field grown plants supplied with 200 and 300 kg NPK ha-1 had 10.28 and 11.18 flowers per truss respectively in trial one. In trial two, field grown plants supplied with 300 kg NPK ha-1 had 11.32 flowers per truss. Greenhouse grown plants supplied with 300 kg NPK ha-1 had 20.61 and 14.19 aborted flowers in trial one and two respectively. High pollen viability was recorded from non-aborted flowers obtained from field grown plants supplied with 300 kg NPK ha-1 with a pollen viability of 94.48% and 93.97% in trial one and two respectively. Pollen from non-aborted flowers obtained from field grown plants supplied with 300 kg NPK ha-1 had the highest pollen germination of 68.72 and 67.72% in trial one and two respectively. Application of 200 and 300 kg NPK ha-1 for field and greenhouse grown pepino melon plants led to reduced flower abortion, high number of flowers per truss, high pollen viability and pollen germination.
Abdul-Baki, A. A. (1992). Plant ecophysiology. John Willey and Sons Inc., pp 101-126. | ||||
Adams, S. R., Cockshull, K. E., & Cave, C. R. J. (2001). Effect of temperature on the growth and development of tomato fruits. Annals of Botany, 88, 869-877. Crossref |
||||
Aloni, B., Karni, L., Zaidman, Z., & Schaffer, A. A. (1997). The relationship between sucrose supply, sucrose-cleaving enzymes and flower abortion in pepper. Annals of Botany, 79, 601-605. Crossref |
||||
Aloni, B., Pashkar, T., & Karni, L. (1991). Partitioning of [14C] sucrose and acid invertase activity in reproductive organs of pepper plants in relation to their abscission under heat stress. Annals of Botany, 67, 371-377. Crossref |
||||
Apel, K., & Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress and signal transduction. Annual Review of Plant Biology, 55, 373-399. Crossref |
||||
Ascough, G. D., Nogemane, N., Mtshali, N. P., & Staden, J. V. (2005). Flower abscission: environmental control, internal regulation and physiological responses of plants. South African Journal of Botany, 71(3&4), 287-301. Crossref |
||||
Atherton, J. C., & Rudish, J. (1986). The tomato crop. Chapman and Hal. Pp 67-215. Crossref |
||||
Boote, K. J., Aleen, L. H., Prasad, P. V. V., Baker, J. T., Gesch, R. W., Snyder, A. M., Pan, D., & Thomas, J. M. G. (2005). Elevated temperature and carbon dioxide impacts on pollination, reproductive growth, and yield of several globally important Crops. Journal of Agricultural Metereology Japan, 60, 469-474. Crossref |
||||
Brewbacker, J. L., & Kwack, B. H. (1963). The essential role of calcium ion in pollen germination and pollen tube growth. American Journal of Botany, 50, 859-865. Crossref |
||||
Burge, G. K. (1989). Fruit set in the pepino (Solanum muricatum Ait.). Scientia Horticulturae, 41, 63-68. Crossref |
||||
Cavusoglu, A., Erkel, I. E., & Sulusoglu, M. (2009). The effects of climatic factors at different growth periods on pepino (Solanum muricatum Aiton): A model for the enhancement of underutilized exotic fruits. Food Research International, 44, 1927-1935. | ||||
Cong, Z., Lu, H., & Ni, G. (2014). A simplified dynamic method for field capacity estimation and its parameter analysis. Water Science and Engineering, 7(4), 351-362. | ||||
Croser, J. S., Clarke, H. J., Siddque, K. H. M., & Khan, T. N. (2003). Low temperature stress: implications for chickpea (Cicer arietinum L.) improvement. Critical Reviews in Plant Science, 22, 185-219. Crossref |
||||
Dominguez, E., Cuartero, J., & Fernandez-Munoz, R. (2005). Breeding tomato for pollen tolerance to low temperatures by gametophytic selection. Euphytica, 142, 253-263. Crossref |
||||
Erickson, A. N., & Markhart, A. H. (2001). Flower production, fruit set, and physiology of bell pepper during elevated temperature and vapor pressure deficit. Journal of the American Society for Horticultural Science, 126, 697-702. Crossref |
||||
Erickson, A. N., & Markhart, A. H. (2002). Flower development stage and organ sensitivity of bell pepper (Capsicum annuum L.) to elevated temperature. Plant, Cell and Environment, 25, 123-130. Crossref |
||||
FAO (1994). Neglected Crops: 1492 from a different perspective. FAO plant production and protection series, No. 26 ISBN 92-5-103217-3. | ||||
Ganova, D., Grozeva, S., & Pericharova, G. (2019). Effect of reduced irrigation on flowering, fruit set and yield of indeterminate tomatoes. International Journal of Research Technology and Engineering 8, 2, 932-936. Crossref |
||||
Gruda, N. (2005). Impact of environmental factors on product quality of greenhouse vegetables for fresh consumption. Critical Reviews in Plant Sciences, 24, 227-247. Crossref |
||||
Guinn, G. (1974). Abscission of cotton floral buds as influenced by factors affecting photosynthesis and respiration. Crop Science, 14, 291-293. Crossref |
||||
Heuvelink, E., Marcelis, L. F. M., & Korner, O. (2004). How to reduce yield fluctuation in sweet pepper? Acta Horticulturae, 633, 349-355. Crossref |
||||
Hoekstra, F. A., Crowe, L. M., & Crowe, J. H. (1989). Differential dessication sensitivity of corn and pennisetum pollen linked to their sucrose contents. Plant Cell and Environment, 12, 83-91. Crossref |
||||
Huan, F., Lizhe, A., Ling, L. T., Zong, D. H., & Unling, W. X. (2000). Effect of enhanced Ultraviolet-B radiation on pollen germination ad tube growth of 19 Taxa in vitro. Environment and Experimental Botany, 43, 45-53. Crossref |
||||
Huberman, M., Riov, J., Aloni, B., & Goren, R. (1997). Role of ethylene biosynthesis and auxin content and transport in high temperature induced abscission of pepper reproductive organs. Journal of Plant Growth Regulation, 16, 129-135. Crossref |
||||
Iyagba, A. G., Onuegbu, B. A., & Ibe, A. E. (2013). Growth and yield response of okra (Abelmoschus esculentus (L.) Moench) to NPK fertilizer rates and weed interference in South-eastern Nigeria. International Research Journal of Agricultural Science and Soil Science, 3(9), 328-335. | ||||
Jaetzold, R., & Schmidt, H. (2006). Farm management handbook of Kenya. Natural conditions and farm management information, Ministry of Agriculture Kenya. | ||||
Jang, J. C., & Sheen, J. (1997). Sugar sensing in higher plants. Trends Plant Science, 2, 208-213. Crossref |
||||
Kafizadeh, N., Carapetian, J., & Kalantari, K. M. (2008). Effects of heat stress on pollen viability and pollen tube growth in pepper. Research Journal of Biological Sciences, 3(10), 1159-1162. | ||||
Kakani, V. G., Reddy, R. K., Koti, S., Wallace, T. P., Prasad, P. V. V., Reddy, V. R., & Zhao, D. (2005). Differences in in vitro pollen germination and pollen tube growth of cotton cultivars in response to high temperature. Annals of Botany, 96, 607-612. Crossref |
||||
Khetran, R., Kasi, M. A., Agha, S. A. H., Fahmid, S., & Ali, J. (2016). Effect of different doses of NPK fertilizers on growth of okra (Abelmoschus esculentus (L.) Moench). International Journal of Advanced Research in Biological Sciences, 3(10), 213-218. Crossref |
||||
Kotak, S., Larkindale, J., Lee, U., Von, K. P., Vierling, E., & Scharf, K. D. (2007). Complexity of the heat stress response in plants. Current Opinion in Plant Biology, 10, 310-316. Crossref |
||||
Lau, T. C., & Stephenson, A. G. (1993). Effects of soil nitrogen on pollen production, pollen grain size and pollen performance in Cucurbita pepo (Cucurbitaceae). American Journal of Botany, 80(7), 763-768. Crossref |
||||
Levy, A., Rabonowitch, H. D., & Kedar, N. (1978). Morphological and physiological characters affecting flower drop and fruit set of tomatoes at high temperatures. Euphytica, 27, 211-217. Crossref |
||||
Lim, T. K. (2015). Fruits. In T. K. Lim (Ed.), Edible Medicinal and Non-medicinal plants. Springer. Pp. 390-394. | ||||
Makinde, A. I., Jokanola, O. O., Adedeji, J. A., Awogbade, A. L., & Adenkule, A. F. (2016). Impact of organic and inorganic fertilizers on the yield, lycopene and some minerals in tomato (Lycopersicon esculentum Mill) fruit. European Journal of Agriculture and Forestry Research, 4(1), 18-26. | ||||
Marcelis, L. F. M., Heuvelink, E., Baan Hofman-Eijer, L. R., Den, B. J., & Xue, L. B. (2004). Flower and fruit abortion in sweet pepper in relation to source and sink strength. Journal of Experimental Botany, 55, 2261-2268. Crossref |
||||
Mends-Cole, M. T., Banful, B. K., and Tandoh, P. K. (2019). Flower abortion and fruit yield responses of two varieties of chilli pepper (Capsicum frutescens L.) to different planting dates and plant densities. Archives of Current Research International, 16(1), 1-11. Crossref |
||||
Nyoka, B. I., Sileshi, G. W., & Silim, S. N. (2015). Flower and pod abortion and its implication to seed production in Gliricidia sepium (Jacq.) Walp. International Journal of Agroforestry and Silviculture, 2(6), 144-148. | ||||
Okalebo, J. R., Gathua, K. W., & Woomer, P. L. (2002). Laboratory methods of soil and water analysis: A working manual. Second edition. 128p. | ||||
Prasad, P. V. V., Boote, K. J., Allen, L. H., & Thomas, J. M. G. (2002). Effects of elevated temperature and carbon dioxide on seed-set and yield of kidney bean (Phaseolus vulgaris L.). Global Change Biology, 8(8), 710-721. Crossref |
||||
Prasad, P. V. V., Boote, K. J., Allen, L. H., & Thomas, J. M. G. (2003). Super optimal temperatures are detrimental to peanut (Arachis hypogaea L.) reproductive processes and yield at both ambient and elevated carbon dioxide. Global Change Biology, 9, 1775-1787. Crossref |
||||
Prasad, P. V. V., Craufurd, P. Q., & Summerfield, R. J. (1999). Fruit number in relation to pollen production and viability in groundnut exposed to short episodes of heat stress. Annals of Botany, 84, 381-386. Crossref |
||||
Pressman, E., Peet, M. M., & Pharr, D. M. (2002). The effect of heat stress on tomato pollen characteristics is associated with changes in carbohydrate concentration in the developing anthers. Annals of Botany, 90, 631-636. Crossref |
||||
Prohens, J., Ruiz, J. J. and Nuez, F. (2000). Growing cycles for a new crop, the pepino, in the Spanish Mediterranean. Acta Horticulturae, 523, 53-60. Crossref |
||||
Rathod, V., Behera, T. K., Munshi, A. D., Durgesh, K., Jat, G. S., Boopala, K. G., & Sharma, N. (2018). Pollen viability and in vitro pollen germination studies in Momordica species and their intra and interspecific hybrids. International Journal of Chemical Studies, 6(6), 32-40. | ||||
Razzaq, M. K., Rauf, S., Khurshid, M., Iqbal, S., Bhat, J. A., Farzand, A., Riaz, A., Xing, G., & Gai, J. (2019). Pollen viability an index of abiotic stresses tolerance and methods for improved pollen viability. Pakistan Journal of Agricultural Research, 32(4), 609-624. Crossref |
||||
Reddy, K. R., & Kakani, V. G. (2007). Screening Capsicum species of different origins for high temperature tolerance by in vitro pollen germination and pollen tube length. Scientia Horticulturae, 112, 130-135. Crossref |
||||
Saito, T., & Ito, H. (1973). Studies on flowering and fruiting in eggplants. VIII. Effects of early environmental conditions and cultural treatment on flower development and drop. Journal of the Japanese Society for Horticultural Science, 42, 155-162. Crossref |
||||
SAS Institute. (2005). Step by Step Basic Statistics Using SAS; Student Guide; Version 9.1 Cary, SAS Institute Inc., North Carolina, USA. 40p. | ||||
Sato, S., Peet, M. M., & Thomas, J. F. (2000). Physiological factors limit fruit set of tomato (Lycopersicon esculentum Mill.) under chronic mild heat stress. Plant Cell Environment, 23, 719-26. Crossref |
||||
Stephenson, A. G. (1981). Flower and fruit abortion: proximate causes and ultimate functions. Annual Reviews of Ecological Systems, 12, 253-279. Crossref |
||||
Taylor, J. E., & Whitelaw, A. C. (2001). Signals in abscission. New Phytologist, 151, 323-339. Crossref |
||||
Thunar, M. (2010). The effects of temperature stress on the quality and yield of soya bean [Glycine max L. (Merrill)]. Journal of Agricultural Science, 2(1), 172-178. Crossref |
||||
Van, D. W. G., & Stead, A. D. (1997). Abortion of flowers and floral parts. Journal of Experimental Botany, 48, 821-837. Crossref |
||||
Warner, R. M., & Erwin, J. E. (2005). Naturally occurring variation in high temperature induced floral bud abortion across Arabidopsis thaliana accessions. Plant, Cell and Environment, 28, 1255-1266. Crossref |
||||
Wien, H. C., Aloni, B., Riov, J., Goren, R., Huberman, M., & Ho, C. J. (1993). Physiology of heat stress-induced abscission in pepper. In: Kuo, C. G., (ed.). Adaptation of Food Crops to Temperature and Water Stress (Pp. 188-198). Proceedings of an International Symposium, Taiwan. | ||||
Wubs, A. M., Heuvelink, E., & Marcelis, L. F. M. (2009). Abortion of reproductive organs in sweet pepper (Capsicum annuum L.): A review. Journal of Horticultural Science and Biotechnology, 85(5), 467-475. Crossref |
||||
Zinn, K. E., Tunc-Ozdemir, M., & Harper J. F. (2010). Temperature stress and plant sexual reproduction: Uncovering the weakest links. Journal of Experimental Botany, 61(7), 1959-1968. Crossref |