ADVANCED JOURNAL OF PLANT BIOLOGY
Integrity Research Journals

ISSN: 2992-4928
Model: Open Access/Peer Reviewed
DOI: 10.31248/AJPB
Start Year: 2019
Email: ajpb@integrityresjournals.org


Antimalarial evaluation of the stem bark extract of Anacardium occidentale stem bark (Anacadeceae): Cashew stem bark

https://doi.org/10.31248/AJPB2024.033   |   Article Number: 16F698AE2   |   Vol.4 (1) - June 2024

Received Date: 30 April 2024   |   Accepted Date: 26 June 2024  |   Published Date: 30 June 2024

Authors:  Chidimma Iheanacho* , Paschal C. Akubuiro , Irene O. Oseghale , Vincent O. Imieje , Osayemwenre Erharuyi , Kennedy Ogbeide , Abiodun Falodun and Arthur Jideonwo

Keywords: Plasmodium falciparum., medicinal plants, Anacardium occidentale, antimalarial, cashew stem bark

Malaria is a threat to life and one of the most notorious of all parasitic diseases. It is a protozoa disease caused by the genus Plasmodium and transmitted through the bite of an infected female Anopheles mosquito. Five species of this plasmodium exist and have been identified to infect humans: Plasmodium falciparum, Plasmodium malariae, Plasmodium vivax, Plasmodium ovale and Plasmodium knowlesi.  P. falciparum causes the most severe form of the disease in man. Antimalarial drugs exist for the treatment of malaria. Still, the development of resistance to antimalarial drugs by the parasites poses one of the greatest threats to malaria control, and this happens to be the main cause of recent increases in malaria morbidity and mortality. Some antimalarial drugs that have been used in the treatment of malaria diseases include quinine, and its derivatives, artemisinin in combination states, such as amodiaquine, mefloquine, lumefantrine or sulfadoxine-pyrimethamine, including some plant extracts for treatment of drug-resistant malaria and some antibiotics such as doxycycline, and tetracycline. Despite the use of synthetic drugs in the treatment of malaria, some medicinal plant like Alstonia boonei (Apocynaceae), Vernonia amygdalina (bitter leaf), Acanthospermum hispidum, Keetia leucantha, Carpolobia lutea aerial, Cymbopogon citratus (lemongrass) and Azadirachta indica have been noted in the treatment of malaria with no exception to A. occidentale. Therefore, the present study investigated the anti-malarial activity of the stem bark extract and fractions of A. occidentale. The n-hexane: ethylacetate fraction of stem bark extract of A. occidentale demonstrated potential anti-malarial activity with percentage chemo-suppression of 56.18% and 65.85% at 1000mg/kg body weight after the fifth and seventh day of treatment, respectively.

Adebayo, J. O., & Malomo, S. O. (2002). The effect of co-administration of dihydroartemisinin with vitamin E on the activities of cation ATPases in some rat tissues. Nigerian Journal of Pure and Applied Sciences, 17, 1245-1252.
 
Afonso, A., Hunt, P., Cheesman, S., Alves, A. C., Cunha, C. V., Do Rosário, V., & Cravo, P. (2006). Malaria parasites can develop stable resistance to artemisinin but lack mutations in candidate genes atp6 (encoding the sarcoplasmic and endoplasmic reticulum Ca2+ ATPase), tctp, mdr1, and cg10. Antimicrobial agents and chemotherapy, 50(2), 480-489.
https://doi.org/10.1128/AAC.50.2.480-489.2006
 
Akinpelu, D. A., & Ojewole, J. A. (2001). Antimicrobial activity of Anacardium occidentale bark. Fitoterapia, 72(3), 286-287.
https://doi.org/10.1016/S0367-326X(00)00310-5
 
Baird, J. K., Caneta-Miguel, E., Masbar, S., Bustos, D. G., Abrenica, J. A., Layawen, A. V., Calulut, J.M., Leksana, B., & Wignall, F. S. (1996). Survey of resistance to chloroquine of falciparum and vivax malaria in Palawan, The Philippines. Transactions of the Royal Society of Tropical Medicine and Hygiene, 90(4), 413-414.
https://doi.org/10.1016/S0035-9203(96)90528-3
 
Boareto, A. C., Muller, J. C., Bufalo, A. C., Botelho, G. G., de Araujo, S. L., Foglio, M. A., ... & Dalsenter, P. R. (2008). Toxicity of artemisinin [Artemisia annua L.] in two different periods of pregnancy in Wistar rats. Reproductive Toxicology, 25(2), 239-246.
https://doi.org/10.1016/j.reprotox.2007.11.003
 
Bruce-Chwatt, L. J. (1982). Qinghaosu: a new antimalarial. British Medical Journal (Clinical Research Ed.), 284(6318), 767.
https://doi.org/10.1136/bmj.284.6318.767
 
Dharani, N., Rukunga, G., Yenesew, A., Mbora, A., Mwaura, L., Dawson, I., & Jamnadass, R. (2010). Common antimalarial trees and shrubs of East Africa. A Description of Species and a Guide to Cultivation and Conservation through Use, Pp. 73-76.
 
Echindu, T. N. C. (1991). Ginger, cashew and neem as surface protectants of cowpeas against infestation and damage by Callosobruchus maculatus (Fab.). Journal of Tropical Science, 31, 209-211.
 
Falade, M. O., Akinboye, D. O., Gbotosho, G. O., Ajaiyeoba, E. O., Happi, T. C., Abiodun, O. O., & Oduola, A. M. J. (2014). In vitro and in vivo antimalarial activity of Ficus thonningii Blume (Moraceae) and Lophira alata Banks (Ochnaceae), identified from the ethnomedicine of the Nigerian Middle Belt. Journal of Parasitology Research, Volume 2014, Article ID 972853, 6 pages.
https://doi.org/10.1155/2014/972853
 
Gathirwa, J. W., Rukunga, G. M., Mwitari, P. G., Mwikwabe, N. M., Kimani, C. W., Muthaura, C. N., Kiboi, D. M., Nyangacha, R. M., & Omar, S. A. (2011). Traditional herbal antimalarial therapy in Kilifi district, Kenya. Journal of Ethnopharmacology, 134(2), 434-442.
https://doi.org/10.1016/j.jep.2010.12.043
 
Haynes, R. K. (2001). Artemisinin and derivatives: the future for malaria treatment?. Current opinion in infectious diseases, 14(6), 719-726.
https://doi.org/10.1097/00001432-200112000-00010
 
Klayman, D. L. (1985). Qinghaosu (artemisinin): An antimalarial drug from China. Science, 228(4703), 1049-1055.
https://doi.org/10.1126/science.3887571
 
Knight, D. J., & Peters, W. (1980). The antimalarial activity of N-benzyloxydihydrotriazines: I. The activity of clociguanil (BRL 50216) against rodent malaria, and studies on its mode of action. Annals of Tropical Medicine & Parasitology, 74(4), 393-404.
https://doi.org/10.1080/00034983.1980.11687360
 
Kubo, I., Kinst-Hori, I., & Yokokawa, Y. (1994). Tyrosinase inhibitors from Anacardium occidentale fruits. Journal of Natural Products, 57(4), 545-551.
https://doi.org/10.1021/np50106a021
 
Malomo, S. O., Adebayo, J. O., & Olorunniji, F. J. (2001). Decrease in activities of cation ATPases and alkaline phosphatate in kidney and liver of artemether treatead rats. NISEB Journal, 1, 175-182.
 
Mesfin, A., Giday, M., Animut, A., & Teklehaymanot, T. (2012). Ethnobotanical study of antimalarial plants in Shinile District, Somali Region, Ethiopia, and in vivo evaluation of selected ones against Plasmodium berghei. Journal of Ethnopharmacology, 139(1), 221-227.
https://doi.org/10.1016/j.jep.2011.11.006
 
Mokuolu, O. A., Okoro, E. O., Ayetoro, S. O., & Adewara, A. A. (2007). Effect of artemisinin-based treatment policy on consumption pattern of antimalarials. American Journal of Tropical Medicine and Hygiene, 76(1), 7-11.
https://doi.org/10.4269/ajtmh.2007.76.7
 
Mota, M. L., Thomas, G., & Barbosa Filho, J. M. (1985). Anti-inflammatory actions of tannins isolated from the bark of Anacardium occidentale L. Journal of Ethnopharmacology, 13(3), 289-300.
https://doi.org/10.1016/0378-8741(85)90074-1
 
Odugbemi, T. O., Akinsulire, O. R., Aibinu, I. E., & Fabeku, P. O. (2007). Medicinal plants useful for malaria therapy in Okeigbo, Ondo State, Southwest Nigeria. African Journal of Traditional, Complementary and Alternative Medicines, 4(2), 191-198.
https://doi.org/10.4314/ajtcam.v4i2.31207
 
Saxena, S., Pant, N., Jain, D. C., & Bhakuni, R. S. (2003). Antimalarial agents from plant sources. Current Science, 85, 1314-1329.
 
Upadhyay, H. C., Sisodia, B. S., Agrawal, J., Pal, A., Darokar, M. P., & Srivastava, S. K. (2014). Antimalarial potential of extracts and isolated compounds from four species of genus Ammannia. Medicinal Chemistry Research, 23, 870-876.
https://doi.org/10.1007/s00044-013-0682-5