GLOBAL JOURNAL OF EARTH AND ENVIRONMENTAL SCIENCE
Integrity Research Journals

ISSN: 2636-6002
Model: Open Access/Peer Reviewed
DOI: 10.31248/GJEES
Start Year: 2016
Email: gjees@integrityresjournals.org


Application of phytoremediation in the management of oil spillage: A review

https://doi.org/10.31248/GJEES2018.018   |   Article Number: 7DFAF8061   |   Vol.3 (3) - August 2018

Received Date: 04 May 2018   |   Accepted Date: 16 July 2018  |   Published Date: 30 August 2018

Authors:  Adeniyi, K. A. , Angulu C. N.* , Atuluku S. A. , Balogun A. N. , Oladoja E. and Attah-Olottah, R.

Keywords: Phytoremediation, Biodegradation, contaminants, oil spillage

Crude oil production and distribution have increased the incidence of oil spills throughout the world. Oil spills often cause destructive effects on aquatic and land ecosystems. The oil spill clean-up and recovery techniques are challenging and usually involve complex mechanical, chemical, and biological methods. Usually, mechanical removal of free oil is utilized as an effective strategy for clean-up in aquatic and terrestrial environments; however, they are expensive and need specialist personnel and equipment. Phytoremediation is a green process that involves the use of plant in removing or degrading contaminants in the environment. Plants are able to remove pollutants through processes such as biodegradation, phytovolatilization, accumulation, and metabolic transformation. This review is focused on the impacts of oil spillage on the environment and the use of plants to extract, degrade, stabilize and volatilize spilled oil (management of oil spillage through phytoremediation) as well as the limitations of using phytoremediation in the management of oil spillage.

Adesuyi, A. A., Hjoku, K. L., & Akinola, M. O. (2015). Assassment of heavy metals pollution in soil and vegetation around selected industries in Lagos State, Nigeria Journal Geoscience Environmental Protection, 3 11-19.
Crossref
 
Ali, H., Khan, E. & Sajad, M. A. (2013). Phytoremediation of heavy metals – concepts and applications Chemosphere, 91 869-81.
Crossref
 
Ansari, A. A., Gill, S. S., Gill, R., Lanza, G. R., & Newman, L. (Eds.). (2014). Phytoremediation: management of environmental contaminants (vol. 1). Springer.
 
Atagana, H. I. (2011). Bioremediation of co-contamination of crudeoil and heavy metals in soil by phytoremediation using Chromolaena odorata (L) King and HE Robinson. Water, Air, and Soil Pollution, 215(1-4), 261-271.
Crossref
 
Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S., & Vivanco, J. M. (2006). The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 57, 233-266.
Crossref
 
Basumatary, B., Saikia, R., & Bordoloi, S. (2012a). Phytoremediation of crude oil contaminated soil using nut grass, Cyperus rotundus. Journal of environmental biology, 33(5), 891.
 
Basumatary, B., Bordoloi, S., & Sarma, H. P. (2012b). Crude oil contaminated soil phytoremediation by using Cyperus brevifolius (Rottb.) Hassk. Water, Air, and Soil Pollution, 223(6), 3373-3383.
Crossref
 
Bhatia, M., & Goyal, D. (2014). Analyzing remediation potential of wastewater through wetland plants: a review. Environmental Progress and Sustainable Energy, 33(1), 9-27.
Crossref
 
Boonsaner, M., Borrirukwisitsak, S., & Boonsaner, A. (2011). Phytoremediation of BTEX contaminated soil by Canna generalis. Ecotoxicology and Environmental Safety, 74(6), 1700-1707.
Crossref
 
Cai, Z., Zhou, Q., Peng, S., & Li, K. (2010). Promotion biodegradation and microbiological effects of petroleum hydrocarbons by Impatiens balsamina L. with strong endurance. Journal of Hazardous Materials, 183(1), 731-737.
Crossref
 
Cook, R. L., & Hesterberg, D. (2013). Comparison of trees and grasses for rhizoremediation of petroleum hydrocarbons. International journal of phytoremediation, 15(9), 844-860.
Crossref
 
Dixit, R., Wasiulah, G., Malaviya, D., Pandiyan, K., Singh, U. B., Sahu, A., Shukla, R., Singh, B. P., Rai, J. P., Sharma, P. K., Lade, H., & Paul, D. (2015). Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental processes Sustainability 7, 2189-212
Crossref
 
Dave, D., & Ghaly, A. E. (2011). Remediation technologies for marine oil spills: a critical review and comparative analysis. American Journal of Environmental Sciences, 7(5), 423.
Crossref
 
Erdogan, E. E., & Karaca, A. (2011). Bioremediation of crude oil polluted soils. Asian Journal of Biotechnology, 3,206-213.
Crossref
 
EPA (U.S. Environmental Protection Agency) (2000). Introduction to Phytoremediation (Ohio: State Environmental Protection Agency). p. 104.
 
Ferro, A. M., Adham, T., Berra, B., & Tsao, D. (2013). Performance of deep-rooted phreatophytic trees at a site containing total petroleum hydrocarbons. International Journal of Phytoremediation, 15(3), 232-244.
Crossref
 
Gerhardt, K. E., Huang, X. D., Glick, B. R., & Greenberg, B. M. (2009). Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Science, 176(1), 20-30.
Crossref
 
Huesemann, M. H., Hausmann, T. S., Fortman, T. J., Thom, R. M., & Cullinan, V. (2009). In situ phytoremediation of PAH-and PCB-contaminated marine sediments with eelgrass (Zostera marina). Ecological Engineering, 35(10), 1395-1404.
Crossref
 
Issoufi, I., Rhykerd, R. L., & Smiciklas, K. D. (2006). Seedling growth of agronomic crops in crude oil contaminated soil. Journal of Agronomy and Crop Science, 192(4), 310-317.
Crossref
 
Jewett, S. C., Dean, T. A., Woodin, B. R., Hoberg, M. K., & Stegeman, J. J. (2002). Exposure to hydrocarbons 10 years after the Exxon Valdez oil spill: evidence from cytochrome P4501A expression and biliary FACs in nearshore demersal fishes. Marine Environmental Research, 54(1), 21-48.
Crossref
 
Kang, C. H., Kwon, Y. J., & So, J. S. (2016). Bioremediation of heavy metals by using bacterial mixtures. Ecological Engineering, 89, 64-69.
Crossref
 
Khan, S., Afzal, M., Igbal, S., & Khan, Q. M. (2013). Plant-bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere, 90(4), 1317-1332.
Crossref
 
León, V. M., Moreno-González, R., González, E., Martínez, F., García, V., & Campillo, J. A. (2013). Interspecific comparison of polycyclic aromatic hydrocarbons and persistent organochlorines bioaccumulation in bivalves from a Mediterranean coastal lagoon. Science of the Total Environment, 463,975-987.
Crossref
 
Liang, Y., Zhang, X., Dai, D., & Li, G. (2009). Porous biocarrier enhanced biodegradation of crude oil contaminated soil. International Biodeterioration and Biodegradation, 63(1), 80-87.
Crossref
 
Lin, Q., & Mendelssohn, I.A. (2009). Potential of restoration and phytoremediation with Juncus roemerianus for diesel contaminated coastal wetlands. Ecological Engineering, 35(1), 85-91.
Crossref
 
Lu, M., Zhang, Z., Sun, S., Wei, X., Wang, Q., & Su, Y. (2010). The use of goosegrass (Eleusine indica) to remediate soil contaminated with petroleum. Water, Air, and Soil Pollution, 209(1-4), 181-189.
Crossref
 
Agbogidi, M. O., Dolor, D. E., & Okechukwu, M. E. (2007). Evaluation of Tectona grandis (Linn.) and Gmelina arborea (Roxb.) for phytoremediation in crude oil contaminated soils. Agriculture Conspectus Scientificus (ACS), 72(2), 149-152.
 
Moreira, I. T., Oliveira, O. M., Triguis, J. A., dos Santos, A. M., Queiroz, A. F., Martins, C. M., … & Jesus, R. S. (2011). Phytoremediation using Rizophora mangle L. in mangrove sediments contaminated by persistent total petroleum hydrocarbons (TPH's). Microchemical Journal, 99(2), 376-382.
Crossref
 
Murakami, Y., Kitamura, S. I., Nakayama, K., Matsuoka, S., & Sakaguchi, H. (2008). Effects of heavy oil in the developing spotted halibut, Verasper variegatus. Marine Pollution Bulletin, 57(6), 524–528.
Crossref
 
Ndimele, P. E. (2010). A review on the phytoremediation of petroleum hydrocarbon. Pakistan Journal of Biological Sciences, 13(15), 715.
Crossref
 
Ndimele, P. E., Kumolu-Johnson, C. A., & Anetekhai, M. A. (2011). The invasive aqatic macrophyte, water hyacinth {Eichhornia crassipes (Mart.) Solm-Laubach: Pontedericeae}: problems and prospects. Research Journal Environmental Sciences, 5(6), 509-520.
Crossref
 
Ojuederie, O. B., & Babalola, O. O. (2017). Microbial and Plant-Assisted Bioremediation of Heavy Metal Polluted Environments: A Review. International journal of environmental research and public health, 14(12), 1504.
Crossref
 
O'Hara, P. D., & Morandin, L. A. (2010). Effects of sheens associated with offshore oil and gas development on the feather microstructure of pelagic seabirds. Marine Pollution Bulletin, 60(5), 672-678.
Crossref
 
Pardue, M. J., Castle, J. W., Rodgers, J. H., Jr., & Huddleston, G. M., III. (2015). Effects of simulated oilfield produced water on early seedling growth after treatment in a pilot-scale constructed wetland system. International Journal of Phytoremediation, 17(4), 330-340.
Crossref
 
Peng, S., Zhou, Q., Cai, Z., & Zhang, Z. (2009). Phytoremediation of petroleum contaminated soils by Mirabilis jalapa L. in a greenhouse plot experiment. Journal of Hazardous Materials, 168(2), 1490-1496.
Crossref
 
Ramos, D. T., Maranho, L. T., Godoi, A. F. L., da Silva Carvalho Filho, M. A., Lacerda, L. G., & de Vasconcelos, E. C. (2009). Petroleum hydrocarbons rhizodegradation by Sebastiania commersoniana (BAILL.) L. B. SM. and Downs. Water, Air, and Soil Pollution, 9(3-4), 293-302.
Crossref
 
Rahman, M. A., & Hasegawa, H. (2011). Aquatic arsenic: phytoremediation using floating macrophytes. Chemosphere, 83(5), 633–646.
Crossref
 
Sumiahadi, A., & Acar, R. (2018, March). A review of phytoremediation technology: heavy metals uptake by plants. In IOP Conference Series: Earth and Environmental Science, 142(1), 012023).
Crossref
 
Sanusi, S. N. A., Abdullah, S. R. S., & Idris, M. (2012). Preliminary test of phytoremediation of hydrocarbon contaminated soil using Paspalum vaginatum Sw. Australian Journal of Basic and Applied Sciences, 6(1), 39-42.
 
Spier, C., Stringfellow, W. T., Hazen, T. C., & Conrad, M. (2013). Distribution of hydrocarbons released during the 2010 MC252 oil spill in deep offshore waters. Environmental Pollution, 173, 224-230.
Crossref
 
Tangahu, V.B., Abdullah, S. R. S., Basri, H., Idris, M. Anuar, N. & Mukhlisin, M. (2011). A review of heavy metal (As, Pb and Hg) uptake by plants through phytoremediation. International Journal of Chemical Engineering, 21, 1- 31.
Crossref
 
Vangronsveld, J., Herzig, R., Weyens, N., Boulet, J., Adriaensen, K., Ruttens, A., Thewys, T., Vassilev, A., Meers, E., Nehnevajova, E., & van der Lelie, D. (2009). Phytoremediation of contaminated soils and groundwater: lessons from the field. Environmental Science and Pollution Research, 16(7), 765-794.
Crossref
 
Walls, W. D. (2010). Petroleum refining industry in China. Energy Policy, 38(5), 2110-2115.
Crossref
 
Wang, J., Liu, X., Zhang, X., Liang, X., & Zhang, W. (2011). Growth response and phytoremediation ability of Reed for diesel contaminant. Procedia Environmental Sciences, 8, 68–74.
Crossref
 
White, P. M., Jr., Wolf, D. C., Thoma, G. J., & Reynolds, C. M (2006). Phytoremediation of alkylated polycyclic aromatic hydrocarbons in a crude oil-contaminated soil. Water, Air, and Soil Pollution, 169(1-4), 207-220.
Crossref
 
Xiu, M., Pan, L., & Jin, Q. (2014). Bioaccumulation and oxidative Damage injuvenile scallop Chlamys farreri exposed to benzo [a] pyrene, benzo [b] fluoranthene and chrysene. Ecotoxicology and Environmental Safety, 107,103-110.
Crossref